当前位置:网站首页>Flink jdbc connector 源码改造sink之 clickhouse多节点轮询写与性能分析

Flink jdbc connector 源码改造sink之 clickhouse多节点轮询写与性能分析

2022-08-04 01:06:00 学到的心态

Flink 写clickhouse集群失败分析

一. 情况说明

消费kafka的数据然后写到clickhouse集群,写的方式是ck每个节点轮询写

1. flink sql

CREATE TABLE `kafka_01` (
   `id` BIGINT,
   `oRDER_ID` STRING,
   `num_dou` DOUBLE,
   `num_int` BIGINT,
   `cloud_wise_proc_time` AS `proctime`()
 ) WITH (
   'connector' = 'kafka',
   'properties.group.id' = 'dodp_1659060265587',
   'scan.startup.mode' = 'latest-offset',
   'value.format' = 'json',
   'value.fields-include' = 'ALL',
   'value.json.ignore-parse-errors' = 'true',
   'value.json.fail-on-missing-field' = 'false',
   'properties.max.poll.records' = '5000',
   'topic' = 'source_76',
   'properties.bootstrap.servers' = 'xxx:18108'
 );


INSERT INTO `sink_ck2`
 (SELECT `id`, `oRDER_ID` AS `name1`, `num_dou`, `num_int`
 FROM `kafka_01`);

CREATE TABLE `sink_ck2` (
   `id` BIGINT,
   `name1` STRING,
   `num_dou` DOUBLE,
   `num_int` BIGINT
 ) WITH (
   'connector' = 'jdbc',
   'driver' = 'ru.yandex.clickhouse.ClickHouseDriver',
   'url' = 'jdbc:clickhouse://***.127:18100/shard_3?socket_timeout=900000,jdbc:clickhouse://***.126:18100/shard_2?socket_timeout=900000,jdbc:clickhouse://***.125:18100/shard_1?socket_timeout=900000',
   'sink.buffer-flush.max-rows' = '10000',
   'sink.buffer-flush.interval' = '10s',
   'sink.max-retries' = '3',
   'username' = '****',
   'pd' = '****',
   'table-name' = 'ellie_sink_ck_replica'
 );

 

2. 报错信息:

2022-08-02 14:13:29,423 INFO  org.apache.kafka.clients.consumer.internals.SubscriptionState [] - [Consumer clientId=consumer-dodp_1659060265587-2, groupId=dodp_1659060265587] Resetting offset for partition source_76-0 to offset 1335.
2022-08-02 14:13:29,424 INFO  org.apache.kafka.clients.consumer.internals.SubscriptionState [] - [Consumer clientId=consumer-dodp_1659060265587-2, groupId=dodp_1659060265587] Seeking to LATEST offset of partition source_76-1
2022-08-02 14:13:29,513 INFO  org.apache.kafka.clients.consumer.internals.SubscriptionState [] - [Consumer clientId=consumer-dodp_1659060265587-2, groupId=dodp_1659060265587] Resetting offset for partition source_76-1 to offset 1332.
2022-08-02 14:13:29,513 INFO  org.apache.kafka.clients.consumer.internals.SubscriptionState [] - [Consumer clientId=consumer-dodp_1659060265587-2, groupId=dodp_1659060265587] Seeking to LATEST offset of partition source_76-2
2022-08-02 14:13:29,595 INFO  org.apache.kafka.clients.consumer.internals.SubscriptionState [] - [Consumer clientId=consumer-dodp_1659060265587-2, groupId=dodp_1659060265587] Resetting offset for partition source_76-2 to offset 1469.
2022-08-02 14:13:29,952 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - JDBC executeBatch error, retry times = 0
java.sql.SQLException: Please call addBatch method at least once before batch execution
	at com.clickhouse.jdbc.SqlExceptionUtils.clientError(SqlExceptionUtils.java:43) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.SqlExceptionUtils.emptyBatchError(SqlExceptionUtils.java:111) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.InputBasedPreparedStatement.executeAny(InputBasedPreparedStatement.java:97) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.AbstractPreparedStatement.executeLargeBatch(AbstractPreparedStatement.java:85) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.ClickHouseStatementImpl.executeBatch(ClickHouseStatementImpl.java:577) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at org.apache.flink.connector.jdbc.statement.FieldNamedPreparedStatementImpl.executeBatch(FieldNamedPreparedStatementImpl.java:120) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.executor.TableSimpleStatementExecutor.executeBatch(TableSimpleStatementExecutor.java:64) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.executor.TableBufferedStatementExecutor.executeBatch(TableBufferedStatementExecutor.java:64) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.attemptFlush(JdbcBatchingOutputFormat.java:236) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.flush(JdbcBatchingOutputFormat.java:182) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.lambda$open$0(JdbcBatchingOutputFormat.java:126) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) ~[?:1.8.0_271]
	at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308) ~[?:1.8.0_271]
	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180) ~[?:1.8.0_271]
	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294) ~[?:1.8.0_271]
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) ~[?:1.8.0_271]
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ~[?:1.8.0_271]
	at java.lang.Thread.run(Thread.java:748) ~[?:1.8.0_271]
...
JDBC executeBatch error, retry times = 1,2,3
...

报错的关键信息就是:
java.sql.SQLException: Please call addBatch method at least once before batch execution。
 
直观的理解就是在没有调用addBatch就执行了executeBatch

 

3. clickhouse多节点轮询写 在Flink jdbc connector 的源码改造逻辑

flink官方并未支持clickhouse的connector,所以我们在支持clickhouse connector,读写逻辑上对Flink jdbc connector 做了改造。对于Flink jdbc connector 写clickhouse分布式表的基本逻辑是:

配置一个分布式表下所有本地表的url,通过轮询的方式写数据,不造成单点的写压力。同时借助Flink jdbc connector 本身sink-retry的逻辑,天然支持了单点故障问题。具体代码稍后分析。

Flink jdbc connector 对于sink的操作,只是实现了单节点的逻辑,目前看报错,我们在某些运行场景下并没有将clickhouse多节点轮询适配的很好。

 
 

二. 问题分析与源码解读

1. 问题表象

先看下关键的堆栈信息

at org.apache.flink.connector.jdbc.statement.FieldNamedPreparedStatementImpl.executeBatch(FieldNamedPreparedStatementImpl.java:120) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.executor.TableSimpleStatementExecutor.executeBatch(TableSimpleStatementExecutor.java:64) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.executor.TableBufferedStatementExecutor.executeBatch(TableBufferedStatementExecutor.java:64) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.attemptFlush(JdbcBatchingOutputFormat.java:236) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.flush(JdbcBatchingOutputFormat.java:182) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.lambda$open$0(JdbcBatchingOutputFormat.java:126) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) ~[?:1.8.0_271]
	at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308) ~[?:1.8.0_271]
	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180) ~[?:1.8.0_271]
	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294) ~[?:1.8.0_271]
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) ~[?:1.8.0_271]
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ~[?:1.8.0_271]
	at java.lang.Thread.run(Thread.java:748) ~[?:1.8.0_271]

根据以上堆栈报错,基本可以定位到,报错的代码位置在:

TableBufferedStatementExecutor.executeBatch()
    @Override
    public void executeBatch() throws SQLException {
    
        for (RowData value : buffer) {
    
            statementExecutor.addToBatch(value);
        }
        statementExecutor.executeBatch();
        buffer.clear();
    }

报错的逻辑也可以根据堆栈信息知道:

在ScheduledThreadPoolExecutor执行定时任务,执行上述代码时因为没有执行“addToBatch”,执行executeBatch而报错。

 

2. flink sql sink时的代码逻辑

知道报错的位置,我们还需要了解flink sql是如何写数据的:

2.1. sink大体的逻辑:

Planing阶段通过Metadata,将sql的(table schema 、sink方式等)参数代码化,然后sink数据时按照metadata的参数规则写数据到具体的数据库(本文是clickhouse)。

planning:
JdbcDynamicTableFactory.createDynamicTableSink 和JdbcDynamicTableSink.getSinkRuntimeProvider 将元数据进行“代码化”,以便安装一定的逻辑sink数据。
 
runtime:
JdbcBatchingOutputFormat. open /writeRecord :建立连接,写数据。

在这里插入图片描述

上图展示了sink的大致逻辑,可以猜测一下具体的runtime的过程:

当上游算子有数据输出到sink时,sink 先open(建立jdbc连接),然后再writeRecord。

 

2.2. with参数下sink的周边逻辑

   'sink.buffer-flush.max-rows' = '10000',
   'sink.buffer-flush.interval' = '3s',
   'sink.max-retries' = '3',

sink刷新到数据库每次最多10000行,(如果在3秒内没有消费10000条则)刷新间隔为3秒,如果写库失败则最多重试3次写数据。
 
 

2.3. 源码分析与问题复现

有了上面的基础,我们大概知道flink是怎么sink数据的,以及按照什么规律sink数据的逻辑,接下来我们具体看一下源码的细节。

上面我们定位到flink在runtime时,主要是JdbcBatchingOutputFormat类,完成了数据的读取和写入。其中open(int taskNumber, int numTasks)writeRecord(In record) 是主要的逻辑。那我们就从这两个方法入手去分析根本问题。
 

对于open(int taskNumber, int numTasks) 主要做了两件事:

一个是创建JDBC连接,另一个是根据sink.buffer-flush.interval 创建了
scheduleWithFixedDelay 定时任务。

    /** * 上游来数据时会open一次 之后就会不了调用这个方法了 * <p> * 连接目标数据库 以及初始化prepared statement。 * Connects to the target database and initializes the prepared statement. * * @param taskNumber The number of the parallel instance. */
    @Override
    public void open(int taskNumber, int numTasks) throws IOException {
    
        super.open(taskNumber, numTasks);
        jdbcStatementExecutor = createAndOpenStatementExecutor(statementExecutorFactory);
        if (executionOptions.getBatchIntervalMs() != 0 //sink.buffer-flush.interval 刷新间隔,默认为1s
                && executionOptions.getBatchSize() != 1) {
     //sink.buffer-flush.max-rows 单批写入最大数据量,默认为100条
            this.scheduler =
                    Executors.newScheduledThreadPool(
                            1, new ExecutorThreadFactory("jdbc-upsert-output-format"));
            //按照一定周期去写批数据。
            this.scheduledFuture =
                    this.scheduler.scheduleWithFixedDelay(
                            () -> {
    
                                synchronized (JdbcBatchingOutputFormat.this) {
    
                                    if (!closed) {
    
                                        try {
    
                                            flush();
                                        } catch (Exception e) {
    
                                            flushException = e;
                                        }
                                    }
                                }
                            },
                            executionOptions.getBatchIntervalMs(),
                            executionOptions.getBatchIntervalMs(),
                            TimeUnit.MILLISECONDS);
        }
    }


//super.open(taskNumber, numTasks) => AbstractJdbcOutputFormat.open
    @Override
    public void open(int taskNumber, int numTasks) throws IOException {
    
        try {
    
            establishConnection();
        } catch (Exception e) {
    
            throw new IOException("unable to open JDBC writer", e);
        }
    }

    protected void establishConnection() throws Exception {
    
        connection = connectionProvider.getConnection();
    }


    /** * 建立JDBC连接: * 适配clickhouse多节点轮询写逻辑 */
    @Override
    public Connection getConnection() throws SQLException, ClassNotFoundException {
    
        if (connection == null) {
     //双重检测提高性能
            synchronized (this) {
    
                if (connection == null) {
    
                    Class.forName(jdbcOptions.getDriverName());
                    /** * 不再使用此逻辑建立连接写表 * jdbc:clickhouse://10.0.1.127,10.0.1.128,10.0.1.129:18100 * 而是通过通过轮询的方式写: * dbc:clickhouse://10.0.1.127:18100/shard_3,jdbc:clickhouse://10.0.1.126:18100/shard_2,jdbc:clickhouse://10.0.1.125:18100/shard_1 * */
                    if (!isWriteLocalClickhouse() && jdbcOptions.getDbURL().contains("clickhouse")) {
    
                        ClickHouseProperties properties = new ClickHouseProperties();
                        properties.setUser(jdbcOptions.getUsername().isPresent() ? jdbcOptions.getUsername().get() : null);
                        properties.setPassword(jdbcOptions.getPassword().isPresent() ? jdbcOptions.getPassword().get() : null);
                        BalancedClickhouseDataSource dataSource = new BalancedClickhouseDataSource(jdbcOptions.getDbURL(), properties);
                        connection = dataSource.getConnection();
                    } else {
    
                        if (jdbcOptions.getUsername().isPresent()) {
    
                            connection =
                                    DriverManager.getConnection(
                                            dbUrls[round++ % dbUrls.length],
                                            jdbcOptions.getUsername().get(),
                                            jdbcOptions.getPassword().orElse(null));
                        } else {
    
                            connection = DriverManager.getConnection(dbUrls[round++ % dbUrls.length]);
                        }
                        if (round >= 4096) {
    
                            round = 0;
                        }
                    }
                }
            }
        }
        return connection;
    }

 

writeRecord(In record) 的逻辑:

先将消费的数据攒批,如果达到 sink.buffer-flush.max-rows 就直接flush到库中,如果没有达到就按照设定的sink.buffer-flush.interval 定时写批。

    /** * 写数据到数据库 * 来一条数据执行一次addBatch */
    @Override
    public final synchronized void writeRecord(In record) throws IOException {
    
        //抛出异常 kill 掉job 以免定时任务浪费资源,或上游数据积压太多
        checkFlushException();
        try {
    
            //如果没有大于batchsize就让定时任务执行
            addToBatch(record, jdbcRecordExtractor.apply(record));
            batchCount++;
            LOG.error("writeRecord addToBatch batchCount {}", batchCount);
            //如果数据大于batchsize 就直接刷新
            if (executionOptions.getBatchSize() > 0
                    && batchCount >= executionOptions.getBatchSize()) {
    
                flush();
            }
        } catch (Exception e) {
    
            throw new IOException("Writing records to JDBC failed.", e);
        }
    }

 
synchronized void flush() 逻辑:

flush数据到库,包括直接flush或者线程定时的flush。
 
如果flush失败则进行重试,重试超过一定次数,flink则认为数据库的连接有问题,为了避免大量的连接以及上游数据堆积浪费资源,所以此时写数据就失效了。
 
对于clickhouse:如果失败然后重连下一个节点,继续尝试flush,如果成功则说明起到了故障转移的效果,如果重试都没成功,那直接让写失效。 具体表现就是 job 被kill:被kill的逻辑大体是checkFlushException(); 抛出异常传递给上游算子。

/** * flush操作 * 直接flush或者线程定时的flush * * @throws IOException */
    @Override
    public synchronized void flush() throws IOException {
    

        checkFlushException();

        //写数据重试
        for (int i = 0; i <= executionOptions.getMaxRetries(); i++) {
    
            try {
    
                attemptFlush();
                batchCount = 0;
                break;
            } catch (SQLException e) {
    
                LOG.error("JDBC executeBatch error, retry times = {}", i, e);
                //等于3次时就直接报异常 不再让addbatch操作 job直接报错停掉
                //包括clickhouse也是如果试了多个节点都不行,则说明sink端故障,直接停到job
                if (i >= executionOptions.getMaxRetries()) {
    
                    throw new IOException(e);
                }
                try {
    
                    reestablishConnection(true);
                } catch (Exception excpetion) {
    
                    LOG.error(
                            "JDBC connection is not valid, and reestablish connection failed.",
                            excpetion);
                    throw new IOException("Reestablish JDBC connection failed", excpetion);
                }
                try {
    
                    Thread.sleep(1000 * i);
                } catch (InterruptedException ex) {
    
                    Thread.currentThread().interrupt();
                    throw new IOException(
                            "unable to flush; interrupted while doing another attempt", e);
                }
            }
        }
        //每写完一批数据都重新建立连接
        try {
    
            reestablishConnection(false);
        } catch (Exception e) {
    
            throw new IOException("Reestablish JDBC connection failed", e);
        }
    }

 
reestablishConnection(boolean hasException):

一般地,如果在flush时出现了异常,则重新创建连接重试写数据
对于clickhouse 则每次写完批之后,都重新建立一次连接,给下一个节点写做准备

    //todo:性能问题:对于clickhouse 每批次的数据可能比较少可能会造成频繁切换数据库连接的问题
    private void reestablishConnection(boolean hasException) throws Exception {
    
        //轮询写clickhouse本地表单独适配
        //如果发生了单点故障,即有数据没有落库,缓存到了flink 此时要换一个节点
        if (connectionProvider.isWriteLocalClickhouse()) {
    
            for (int i = 0; i <= executionOptions.getMaxRetries(); i++) {
    
                try {
    
                    connection = connectionProvider.reestablishConnection();
                    jdbcStatementExecutor.closeStatements();
                    jdbcStatementExecutor.prepareStatements(connection);
                    return;
                } catch (Exception e) {
    
                    e.printStackTrace();
                    LOG.warn("Clickhouse connection is not valid, reestablish next connection, try times " + i + "/" + executionOptions.getMaxRetries() + ", err: " + e.getMessage());
                }
            }
            throw new IOException("Reestablish Clickhouse connection failed.");
        } else if (hasException && !connection.isValid(CONNECTION_CHECK_TIMEOUT_SECONDS)) {
    
            connection = connectionProvider.reestablishConnection();
            jdbcStatementExecutor.closeStatements();
            jdbcStatementExecutor.prepareStatements(connection);
        }
    }


    /** * todo learned:flink官方的本意是如果flush数据到数据库报错,就重试三次: * 具体的,重新建立连接然后再重试flush,如果建立连接失败,则直接(记录)抛异常让addbatch(抛出异常)等操作停止,表现会将job kill掉 * 因为此时flink会认为数据库的连接有问题,为了避免大量的连接以及上游数据堆积浪费资源,所以此时写数据就失效了。 * <p> * ck也遵循flink的逻辑:多个节点轮询写,如果连接建立失败(单点故障假设),那选择另外一个节点继续flush写数据, * 如果重试遍历了所有的节点都不能写,已经表明sink端故障,那就kill 掉 job。 */
    private void checkFlushException() {
    
        if (flushException != null) {
    
            throw new RuntimeException("Writing records to JDBC failed.", flushException);
        }
    }

 
加一些日志,我们看一下clickhouse对于轮询写是如何触发异常,导致job失败的:

2022-08-03 16:25:46,782 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 13 
2022-08-03 16:25:47,785 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:25:47,786 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 14 
2022-08-03 16:25:48,975 INFO  org.apache.flink.connector.jdbc.internal.connection.SimpleJdbcConnectionProvider [] - getConnection get dbUrls jdbc:clickhouse://10.0.1.127:18100/shard_3?socket_timeout=900000
2022-08-03 16:25:49,085 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:25:49,085 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 0 
2022-08-03 16:25:49,794 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:25:49,795 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 1 
2022-08-03 16:25:50,795 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:25:50,795 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 2 
2022-08-03 16:25:51,800 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:25:51,800 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 3 
2022-08-03 16:25:52,804 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:25:52,804 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 4 
2022-08-03 16:25:53,810 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:25:53,810 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 5 
2022-08-03 16:25:54,814 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:25:54,814 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 6 
2022-08-03 16:25:55,817 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:25:55,818 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 7 
2022-08-03 16:25:56,822 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:25:56,822 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 8 
2022-08-03 16:25:57,826 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:25:57,827 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 9 
2022-08-03 16:25:58,832 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:25:58,833 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 10 
2022-08-03 16:25:59,285 INFO  org.apache.flink.connector.jdbc.internal.connection.SimpleJdbcConnectionProvider [] - getConnection get dbUrls jdbc:clickhouse://10.0.1.125:18100/shard_1?socket_timeout=900000
2022-08-03 16:25:59,836 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:25:59,836 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 0 
2022-08-03 16:26:00,838 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:00,838 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 1 
2022-08-03 16:26:01,844 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:01,844 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 2 
2022-08-03 16:26:02,846 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:02,846 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 3 
2022-08-03 16:26:03,851 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:03,852 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 4 
2022-08-03 16:26:04,853 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:04,853 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 5 
2022-08-03 16:26:05,857 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:05,857 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 6 
2022-08-03 16:26:06,860 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:06,860 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 7 
2022-08-03 16:26:07,867 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:07,867 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 8 
2022-08-03 16:26:08,870 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:08,870 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 9 
2022-08-03 16:26:10,576 INFO  org.apache.flink.connector.jdbc.internal.connection.SimpleJdbcConnectionProvider [] - getConnection get dbUrls jdbc:clickhouse://10.0.1.126:18100/shard_2?socket_timeout=900000
2022-08-03 16:26:11,247 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:11,247 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 0 
2022-08-03 16:26:11,251 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:11,251 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 1 
2022-08-03 16:26:11,878 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:11,878 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 2 
2022-08-03 16:26:12,883 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:12,883 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 3 
2022-08-03 16:26:13,885 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:13,885 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 4 
2022-08-03 16:26:14,889 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:14,889 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 5 
2022-08-03 16:26:15,896 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:15,896 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 6 
2022-08-03 16:26:16,899 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:16,900 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 7 
2022-08-03 16:26:17,903 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:17,903 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 8 
2022-08-03 16:26:18,915 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:18,916 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 9 
2022-08-03 16:26:19,911 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:19,911 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 10 
2022-08-03 16:26:20,911 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:20,911 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 11 
2022-08-03 16:26:22,079 INFO  org.apache.flink.connector.jdbc.internal.connection.SimpleJdbcConnectionProvider [] - getConnection get dbUrls jdbc:clickhouse://10.0.1.127:18100/shard_3?socket_timeout=900000
2022-08-03 16:26:22,641 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:22,641 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 0 
2022-08-03 16:26:22,919 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:22,919 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 1 
2022-08-03 16:26:23,923 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:23,923 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 2 
2022-08-03 16:26:24,926 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:24,926 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 3 
2022-08-03 16:26:25,930 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:25,930 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 4 
2022-08-03 16:26:26,935 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - writeRecord prepare to addToBatch 
2022-08-03 16:26:26,935 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - prepare to addToBatch batchCount= 5 
//写了五条数据到flink缓存中,然后切换了ck的节点
2022-08-03 16:26:33,411 INFO  org.apache.flink.connector.jdbc.internal.connection.SimpleJdbcConnectionProvider [] - getConnection get dbUrls jdbc:clickhouse://10.0.1.125:18100/shard_1?socket_timeout=900000
2022-08-03 16:26:44,614 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - JDBC executeBatch error, retry times = 0
java.sql.SQLException: Please call addBatch method at least once before batch execution
	at com.clickhouse.jdbc.SqlExceptionUtils.clientError(SqlExceptionUtils.java:43) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.SqlExceptionUtils.emptyBatchError(SqlExceptionUtils.java:111) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.InputBasedPreparedStatement.executeAny(InputBasedPreparedStatement.java:97) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.AbstractPreparedStatement.executeLargeBatch(AbstractPreparedStatement.java:85) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.ClickHouseStatementImpl.executeBatch(ClickHouseStatementImpl.java:577) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at org.apache.flink.connector.jdbc.statement.FieldNamedPreparedStatementImpl.executeBatch(FieldNamedPreparedStatementImpl.java:122) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.executor.TableSimpleStatementExecutor.executeBatch(TableSimpleStatementExecutor.java:64) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.executor.TableBufferedStatementExecutor.executeBatch(TableBufferedStatementExecutor.java:67) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.attemptFlush(JdbcBatchingOutputFormat.java:258) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.flush(JdbcBatchingOutputFormat.java:202) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.lambda$open$0(JdbcBatchingOutputFormat.java:135) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) ~[?:1.8.0_271]
	at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308) ~[?:1.8.0_271]
	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180) ~[?:1.8.0_271]
	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294) ~[?:1.8.0_271]
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) ~[?:1.8.0_271]
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ~[?:1.8.0_271]
	at java.lang.Thread.run(Thread.java:748) ~[?:1.8.0_271]
2022-08-03 16:26:44,624 INFO  org.apache.flink.connector.jdbc.internal.connection.SimpleJdbcConnectionProvider [] - getConnection get dbUrls jdbc:clickhouse://10.0.1.126:18100/shard_2?socket_timeout=900000
2022-08-03 16:26:44,768 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - JDBC executeBatch error, retry times = 1
java.sql.SQLException: Please call addBatch method at least once before batch execution
	at com.clickhouse.jdbc.SqlExceptionUtils.clientError(SqlExceptionUtils.java:43) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.SqlExceptionUtils.emptyBatchError(SqlExceptionUtils.java:111) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.InputBasedPreparedStatement.executeAny(InputBasedPreparedStatement.java:97) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.AbstractPreparedStatement.executeLargeBatch(AbstractPreparedStatement.java:85) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.ClickHouseStatementImpl.executeBatch(ClickHouseStatementImpl.java:577) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at org.apache.flink.connector.jdbc.statement.FieldNamedPreparedStatementImpl.executeBatch(FieldNamedPreparedStatementImpl.java:122) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.executor.TableSimpleStatementExecutor.executeBatch(TableSimpleStatementExecutor.java:64) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.executor.TableBufferedStatementExecutor.executeBatch(TableBufferedStatementExecutor.java:67) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.attemptFlush(JdbcBatchingOutputFormat.java:258) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.flush(JdbcBatchingOutputFormat.java:202) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.lambda$open$0(JdbcBatchingOutputFormat.java:135) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) ~[?:1.8.0_271]
	at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308) ~[?:1.8.0_271]
	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180) ~[?:1.8.0_271]
	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294) ~[?:1.8.0_271]
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) ~[?:1.8.0_271]
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ~[?:1.8.0_271]
	at java.lang.Thread.run(Thread.java:748) ~[?:1.8.0_271]
2022-08-03 16:26:44,769 INFO  org.apache.flink.connector.jdbc.internal.connection.SimpleJdbcConnectionProvider [] - getConnection get dbUrls jdbc:clickhouse://10.0.1.127:18100/shard_3?socket_timeout=900000
2022-08-03 16:26:45,908 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - JDBC executeBatch error, retry times = 2
java.sql.SQLException: Please call addBatch method at least once before batch execution
	at com.clickhouse.jdbc.SqlExceptionUtils.clientError(SqlExceptionUtils.java:43) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.SqlExceptionUtils.emptyBatchError(SqlExceptionUtils.java:111) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.InputBasedPreparedStatement.executeAny(InputBasedPreparedStatement.java:97) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.AbstractPreparedStatement.executeLargeBatch(AbstractPreparedStatement.java:85) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.ClickHouseStatementImpl.executeBatch(ClickHouseStatementImpl.java:577) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at org.apache.flink.connector.jdbc.statement.FieldNamedPreparedStatementImpl.executeBatch(FieldNamedPreparedStatementImpl.java:122) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.executor.TableSimpleStatementExecutor.executeBatch(TableSimpleStatementExecutor.java:64) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.executor.TableBufferedStatementExecutor.executeBatch(TableBufferedStatementExecutor.java:67) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.attemptFlush(JdbcBatchingOutputFormat.java:258) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.flush(JdbcBatchingOutputFormat.java:202) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.lambda$open$0(JdbcBatchingOutputFormat.java:135) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) ~[?:1.8.0_271]
	at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308) ~[?:1.8.0_271]
	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180) ~[?:1.8.0_271]
	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294) ~[?:1.8.0_271]
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) ~[?:1.8.0_271]
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ~[?:1.8.0_271]
	at java.lang.Thread.run(Thread.java:748) ~[?:1.8.0_271]
2022-08-03 16:26:45,909 INFO  org.apache.flink.connector.jdbc.internal.connection.SimpleJdbcConnectionProvider [] - getConnection get dbUrls jdbc:clickhouse://10.0.1.125:18100/shard_1?socket_timeout=900000
2022-08-03 16:26:48,248 ERROR org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat [] - JDBC executeBatch error, retry times = 3
java.sql.SQLException: Please call addBatch method at least once before batch execution
	at com.clickhouse.jdbc.SqlExceptionUtils.clientError(SqlExceptionUtils.java:43) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.SqlExceptionUtils.emptyBatchError(SqlExceptionUtils.java:111) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.InputBasedPreparedStatement.executeAny(InputBasedPreparedStatement.java:97) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.AbstractPreparedStatement.executeLargeBatch(AbstractPreparedStatement.java:85) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at com.clickhouse.jdbc.internal.ClickHouseStatementImpl.executeBatch(ClickHouseStatementImpl.java:577) ~[clickhouse-jdbc-0.3.2-patch10.jar:clickhouse-jdbc 0.3.2-patch10 (revision: aebad16)]
	at org.apache.flink.connector.jdbc.statement.FieldNamedPreparedStatementImpl.executeBatch(FieldNamedPreparedStatementImpl.java:122) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.executor.TableSimpleStatementExecutor.executeBatch(TableSimpleStatementExecutor.java:64) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.executor.TableBufferedStatementExecutor.executeBatch(TableBufferedStatementExecutor.java:67) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.attemptFlush(JdbcBatchingOutputFormat.java:258) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.flush(JdbcBatchingOutputFormat.java:202) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at org.apache.flink.connector.jdbc.internal.JdbcBatchingOutputFormat.lambda$open$0(JdbcBatchingOutputFormat.java:135) ~[datalake-connector-jdbc_2.11-1.12.5.jar:5.4.1]
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) ~[?:1.8.0_271]
	at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308) ~[?:1.8.0_271]
	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180) ~[?:1.8.0_271]
	at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294) ~[?:1.8.0_271]
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) ~[?:1.8.0_271]
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ~[?:1.8.0_271]
	at java.lang.Thread.run(Thread.java:748) ~[?:1.8.0_271]

当上游算子(这里是kafka)有数据传输到下游时,ck sink 开始执行open,然后write写数据。
 
此时我停止kafka生产数据,此时ck sink开始报错:具体原因是因为没有数据写入(addBatch),但是执行了sink(executeBatch),导致报错:
java.sql.SQLException: Please call addBatch method at least once before batch execution
 
但是job没有挂掉,继续运行,可以看到flink在切换节点开始重试,但是结果我们知道重试失败,且记录下了flushException,具体地,根据上面的分析(flink已经认定服务器有问题了),此时任务已经是名存实亡。

 
此时我再往kafka里写数据,当sink接收到数据,还没开始处理直接判断checkFlushException(), job直接失败。

分析到这里修改方案很简单,如下加入buffer判断:如果为空就不flush

//TableBufferedStatementExecutor.executeBatch
    @Override
    public void executeBatch() throws SQLException {
    
        if (buffer.isEmpty()) {
    
            return;
        }
        //遍历写 然后一条一条的加入到batch中
        for (RowData value : buffer) {
    
            statementExecutor.addToBatch(value);
        }
        statementExecutor.executeBatch();
        buffer.clear();
    }

 
 

三. 解决改造留下的性能问题

1. clickhouse轮询写“空转”问题

通过上面的分析,当ScheduledThreadPoolExecutor执行clickhouse写数据的定时任务时,假设没有缓存数据到flink此时数据是空的,然后开始执行定时任务,重试一定次数之后,虽然定时任务执行成功,但其实没有flush数据,且每次都会在另外的节点重新建立连接

如果有一段时间就是没有数据的,那么这段时间会造成大量的重连操作,造成资源浪费。

所以还需要判断,如果没有缓存数据,那么直接跳过定时任务,具体代码见:

//JdbcBatchingOutputFormat.flush
  @Override
    public synchronized void flush() throws IOException {
    

        //如果batchcount=0,则说明没有addbatch的数据
        //也就不执行下面的操作 以免clickhouse创建过多的jdbc连接(每次定时执行都会执行三次,如果定时设置的很短则会创建大量的连接)
        if (batchCount == 0) {
    
            return;
        }

        checkFlushException();
        。。。。
   }

 

2. with参数与clickhouse轮询写

再回顾一下sink下的with参数,这次我们按照clickhouse轮询写的逻辑去看两个场景

   'sink.buffer-flush.max-rows' = '10000',
   'sink.buffer-flush.interval' = '3s',
   'sink.max-retries' = '3',

场景1:

如果上游数据传输的很慢,比如 5 条/s,那出现的现象就是,每3秒刷新15条数据到ck,然后轮询下一个节点,继续刷新15条到下一个节点。。。也就是说:每15条数据轮询一个节点。。。太浪费性能了。

 

场景2:

假设一个分布式表对应有5个节点的shard,此时有四个节点突然都挂掉了,根据前面的分析以及上面的配置,我们知道flink会重试3次就行数据的flush,但是我们有5个节点,此时可能出现的情况就是,因为没有遍历到正常的节点,导致job直接挂掉了。

 

3. 小结

通过以上两个clickhouse写数据的场景分析,我们可以有以下调优思路:

对于场景1:

当上游数据传输慢时,我们可以调大sink.buffer-flush.interval 让数据多存一会儿,然后再轮询写节点
当上游数据传输快时,我们可以调大sink.buffer-flush.max-rows 提高轮询效率。

对于场景2:

假设shard节点数为n,那么我们可以设置为:sink.max-retries = n-1,即完全发挥出单点故障的能力。

原网站

版权声明
本文为[学到的心态]所创,转载请带上原文链接,感谢
https://blog.csdn.net/hiliang521/article/details/126097420