当前位置:网站首页>我的训练函数模板(动态修改学习率、参数初始化、优化器选择)
我的训练函数模板(动态修改学习率、参数初始化、优化器选择)
2022-07-31 05:16:00 【王大队长】
最近在kaggle上看到别人的训练函数代码写得很优秀,于是结合自己的训练函数喜好优化了一下训练函数,感觉比之前高级多了!还是要多学习大佬的代码!
所需要的包:
import torch
from torch import nn, optim
from torch.optim.lr_scheduler import CosineAnnealingLR #动态修改学习率
from torchinfo import summary
import timm #加载预训练模型的库
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from matplotlib import pyplot as plt
import numpy as np
from tqdm import tqdm #加载进度条的库
import Ranger #一个优化器的库对训练函数进行封装:
def train(net, loss, train_dataloader, valid_dataloader, device, batch_size, num_epoch, lr, lr_min, optim='sgd', init=True, scheduler_type='Cosine'):
def init_xavier(m):
#if type(m) == nn.Linear or type(m) == nn.Conv2d:
if type(m) == nn.Linear:
nn.init.xavier_normal_(m.weight)
if init:
net.apply(init_xavier)
print('training on:', device)
net.to(device)
if optim == 'sgd':
optimizer = torch.optim.SGD((param for param in net.parameters() if param.requires_grad), lr=lr,
weight_decay=0)
elif optim == 'adam':
optimizer = torch.optim.Adam((param for param in net.parameters() if param.requires_grad), lr=lr,
weight_decay=0)
elif optim == 'adamW':
optimizer = torch.optim.AdamW((param for param in net.parameters() if param.requires_grad), lr=lr,
weight_decay=0)
elif optim == 'ranger':
optimizer = Ranger((param for param in net.parameters() if param.requires_grad), lr=lr,
weight_decay=0)
if scheduler_type == 'Cosine':
scheduler = CosineAnnealingLR(optimizer, T_max=num_epoch, eta_min=lr_min)
train_losses = []
train_acces = []
eval_acces = []
best_acc = 0.0
for epoch in range(num_epoch):
print("——————第 {} 轮训练开始——————".format(epoch + 1))
# 训练开始
net.train()
train_acc = 0
for batch in tqdm(train_dataloader, desc='训练'):
imgs, targets = batch
imgs = imgs.to(device)
targets = targets.to(device)
output = net(imgs)
Loss = loss(output, targets)
# 优化器优化模型
optimizer.zero_grad()
Loss.backward()
optimizer.step()
_, pred = output.max(1)
num_correct = (pred == targets).sum().item()
acc = num_correct / (batch_size)
train_acc += acc
scheduler.step()
print("epoch: {}, Loss: {}, Acc: {}".format(epoch, Loss.item(), train_acc / len(train_dataloader)))
train_acces.append(train_acc / len(train_dataloader))
train_losses.append(Loss.item())
# 测试步骤开始
net.eval()
eval_loss = 0
eval_acc = 0
with torch.no_grad():
for imgs, targets in valid_dataloader:
imgs = imgs.to(device)
targets = targets.to(device)
output = net(imgs)
Loss = loss(output, targets)
_, pred = output.max(1)
num_correct = (pred == targets).sum().item()
eval_loss += Loss
acc = num_correct / imgs.shape[0]
eval_acc += acc
eval_losses = eval_loss / (len(valid_dataloader))
eval_acc = eval_acc / (len(valid_dataloader))
if eval_acc > best_acc:
best_acc = eval_acc
best_model_wts = net.state_dict()
eval_acces.append(eval_acc)
print("整体验证集上的Loss: {}".format(eval_losses))
print("整体验证集上的正确率: {}".format(eval_acc))
net.load_state_dict(best_model_wts)
torch.save(net, "best_acc.pth")
return train_losses, train_acces, eval_acces对整体进行封装(以训练CIFAR-10数据集为例):
import torch
from torch import nn, optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torchinfo import summary
import timm
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from matplotlib import pyplot as plt
import numpy as np
from tqdm import tqdm
import Ranger
def get_dataloader(batch_size):
data_transform = {
"train": transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
"val": transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
train_dataset = torchvision.datasets.CIFAR10('./p10_dataset', train=True, transform=data_transform["train"], download=True)
test_dataset = torchvision.datasets.CIFAR10('./p10_dataset', train=False, transform=data_transform["val"], download=True)
print('训练数据集长度: {}'.format(len(train_dataset)))
print('测试数据集长度: {}'.format(len(test_dataset)))
# DataLoader创建数据集
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
return train_dataloader,test_dataloader
def show_pic(dataloader):
examples = enumerate(dataloader) # 组合成一个索引序列
batch_idx, (example_data, example_targets) = next(examples)
classes = ('airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
fig = plt.figure()
for i in range(6):
plt.subplot(2, 3, i + 1)
# plt.tight_layout()
img = example_data[i]
print('pic shape:',img.shape)
img = img.swapaxes(0, 1)
img = img.swapaxes(1, 2)
plt.imshow(img, interpolation='none')
plt.title(classes[example_targets[i].item()])
plt.xticks([])
plt.yticks([])
plt.show()
def get_net():
net = timm.create_model('resnet50', pretrained=True, num_classes=10)
print(summary(net, input_size=(128, 3, 224, 224)))
'''Freeze all layers except the last layer(fc or classifier)'''
for param in net.parameters():
param.requires_grad = False
# nn.init.xavier_normal_(model.fc.weight)
# nn.init.zeros_(model.fc.bias)
net.fc.weight.requires_grad = True
net.fc.bias.requires_grad = True
return net
def train(net, loss, train_dataloader, valid_dataloader, device, batch_size, num_epoch, lr, lr_min, optim='sgd', init=True, scheduler_type='Cosine'):
def init_xavier(m):
#if type(m) == nn.Linear or type(m) == nn.Conv2d:
if type(m) == nn.Linear:
nn.init.xavier_normal_(m.weight)
if init:
net.apply(init_xavier)
print('training on:', device)
net.to(device)
if optim == 'sgd':
optimizer = torch.optim.SGD((param for param in net.parameters() if param.requires_grad), lr=lr,
weight_decay=0)
elif optim == 'adam':
optimizer = torch.optim.Adam((param for param in net.parameters() if param.requires_grad), lr=lr,
weight_decay=0)
elif optim == 'adamW':
optimizer = torch.optim.AdamW((param for param in net.parameters() if param.requires_grad), lr=lr,
weight_decay=0)
elif optim == 'ranger':
optimizer = Ranger((param for param in net.parameters() if param.requires_grad), lr=lr,
weight_decay=0)
if scheduler_type == 'Cosine':
scheduler = CosineAnnealingLR(optimizer, T_max=num_epoch, eta_min=lr_min)
train_losses = []
train_acces = []
eval_acces = []
best_acc = 0.0
for epoch in range(num_epoch):
print("——————第 {} 轮训练开始——————".format(epoch + 1))
# 训练开始
net.train()
train_acc = 0
for batch in tqdm(train_dataloader, desc='训练'):
imgs, targets = batch
imgs = imgs.to(device)
targets = targets.to(device)
output = net(imgs)
Loss = loss(output, targets)
# 优化器优化模型
optimizer.zero_grad()
Loss.backward()
optimizer.step()
_, pred = output.max(1)
num_correct = (pred == targets).sum().item()
acc = num_correct / (batch_size)
train_acc += acc
scheduler.step()
print("epoch: {}, Loss: {}, Acc: {}".format(epoch, Loss.item(), train_acc / len(train_dataloader)))
train_acces.append(train_acc / len(train_dataloader))
train_losses.append(Loss.item())
# 测试步骤开始
net.eval()
eval_loss = 0
eval_acc = 0
with torch.no_grad():
for imgs, targets in valid_dataloader:
imgs = imgs.to(device)
targets = targets.to(device)
output = net(imgs)
Loss = loss(output, targets)
_, pred = output.max(1)
num_correct = (pred == targets).sum().item()
eval_loss += Loss
acc = num_correct / imgs.shape[0]
eval_acc += acc
eval_losses = eval_loss / (len(valid_dataloader))
eval_acc = eval_acc / (len(valid_dataloader))
if eval_acc > best_acc:
best_acc = eval_acc
best_model_wts = net.state_dict()
eval_acces.append(eval_acc)
print("整体验证集上的Loss: {}".format(eval_losses))
print("整体验证集上的正确率: {}".format(eval_acc))
net.load_state_dict(best_model_wts)
torch.save(net, "best_acc.pth")
return train_losses, train_acces, eval_acces
def show_acces(train_losses, train_acces, valid_acces, num_epoch):#对准确率和loss画图显得直观
plt.plot(1 + np.arange(len(train_losses)), train_losses, linewidth=1.5, linestyle='dashed', label='train_losses')
plt.plot(1 + np.arange(len(train_acces)), train_acces, linewidth=1.5, linestyle='dashed', label='train_acces')
plt.plot(1 + np.arange(len(valid_acces)), valid_acces, linewidth=1.5, linestyle='dashed', label='valid_acces')
plt.grid()
plt.xlabel('epoch')
plt.xticks(range(1, 1 + num_epoch, 1))
plt.legend()
plt.show()
if __name__ == '__main__':
train_dataloader, test_dataloader = get_dataloader(batch_size=64)
show_pic(train_dataloader)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = get_net()
loss = nn.CrossEntropyLoss()
train_losses, train_acces, eval_acces = train(net, loss, train_dataloader, test_dataloader, device, batch_size=64, num_epoch=20, lr=0.1, lr_min=1e-4, optim='sgd', init=False)
show_acces(train_losses, train_acces, eval_acces)边栏推荐
- sql 外键约束【表关系绑定】
- Several solutions for mysql startup error The server quit without updating PID file
- CNN的一点理解
- SSH automatic reconnection script
- Tencent Cloud GPU Desktop Server Driver Installation
- Podspec automatic upgrade script
- SQLite 查询表中每天插入的数量
- js中的对象与函数的理解
- qt:cannot open C:\Users\XX\AppData\Local\Temp\main.obj.15576.16.jom for write
- powershell statistics folder size
猜你喜欢
随机推荐
[Cloud native] Ribbon is no longer used at the bottom layer of OpenFeign starting from the 2020.0.X version
sql 外键约束【表关系绑定】
禅道安装及使用教程
Chinese garbled solution in UTF-8 environment in Powershell
[swagger close] The production environment closes the swagger method
UiBot存在已打开的MicrosoftEdge浏览器,无法执行安装
Web Screenshots and Reverse Proxy
VTK环境配置
Podspec verification dependency error problem pod lib lint , need to specify the source
qt:cannot open C:\Users\XX\AppData\Local\Temp\main.obj.15576.16.jom for write
sql 添加 default 约束
VTK:Could not locate vtkTextRenderer object.
npm WARN config global `--global`, `--local` are deprecated. Use `--location solution
深度学习知识点杂谈
How MySQL - depots table?A look at will understand
The feign call fails, JSON parse error Illegal character ((CTRL-CHAR, code 31)) only regular white space (r
quick-3.5 无法使用模拟器修改
[Cloud native] Simple introduction and use of microservice Nacos
纯shell实现文本替换
quick-3.5 lua调用c++
![[windows]--- SQL Server 2008 super detailed installation tutorial](/img/b7/dc802c63b07edc4298b6e6b90d865c.png)








