当前位置:网站首页>Object Detection Study Notes
Object Detection Study Notes
2022-07-31 05:32:00 【Cheng-O】
研究背景
Three popular directions of computer:计算机视觉、自然语言处理(NLP)以及语音识别
计算机视觉研究方向:
物体识别和检测
Find common objects in pictures,and output its category and location,比如:人脸检测,车辆检测
识别:Classify which samples are the target
检测:Detect informative features from random noisy images
word segmentation
Classify each pixel in the image,It is equivalent to segmenting the target in the picture
运动和跟踪
The position and size of the target are given at the beginning of the video,Then follow it up in the video follow-up
视觉问答
The purpose is based on the input image,由用户进行提问,而算法自动根据提问内容进行回答


The meaning of object detection
From a research perspective,It is one of the fundamental problems of computer vision,It is the basis of many high-level vision tasks
High-level vision tasks:人脸识别、Pedestrian re-identification、目标跟踪、图像分类
应用角度看,A wide range of application requirements have been expressed
Object detection applications:人脸解锁、视频监控、Statistics of people entering and leaving、辅助驾驶、自动驾驶
发展脉络


The single-stage method requires only one correction of the anchor box to get the final result,The multi-stage method requires multiple corrections.
传统方法
Take advantage of handcrafted features+分类器,以Sliding window method在图像金字塔Iterates over all positions and sizes,进行物体检测
The sliding window method traverses all the positions,Image pyramids are traversed at different sizes
常用数据集

General object detection dataset

人脸检测数据集

评价指标
检测精度
Divide and overlap ratios(IoU)= 交集面积 / 并集面积
召回率 = The number of ground-truth annotations that are recalled(Number of callout pairs)/ The number of true annotations(Number of actual targets)
精度 = 真正例的数量(Number of callout pairs) / The number of test results(Quantity detected)
The recall is to see whether the detection is comprehensive,Accuracy depends on whether the detection is accurate
平均精度均值(mAP ) All species average precision(AP)的均值
平均精度 精度-召回率曲线下的面积
漏检率(Miss rate) = 漏检的数量 / The number of true annotations
Average number of false picks per image(FPPI)= The number of missed checks / 图片数
检测速度
前传耗时(ms) = The time taken from inputting an image to outputting the final result
每秒帧数(FPS)= The number of images that can be processed per second
作业

Overfeat:Integrated Recognition, Localization and Detection using Convolutional Networks
R-CNN:
R-CNN论文详解(论文翻译)_Cheese的博客-CSDN博客_r-cnn
fast RCNN:
Fast R-CNN论文详解_WoPawn的博客-CSDN博客_fasterrcnn论文
faster-RCNN
Faster R-CNN文章详细解读_Michael’s Blog-CSDN博客
FPN:feature pyramid networks for object detection
FPN(feature pyramid networks)算法讲解_AI之路-CSDN博客_feature pyramid
YOLO:
YOLO系列算法精讲:从yolov1至yolov4的进阶之路(2万字超全整理,建议收藏!)_不积跬步,无以至千里!-CSDN博客_yolo系列算法
SSD:
SSD原理解读-从入门到精通_QQBrother's column-CSDN博客_ssd原理
R-FCN:object detection via region-based fully convolutional networks
R-FCN算法及Caffe代码详解_AI之路-CSDN博客_fcn代码详解
DCN:Deep & Cross Network for Ad Click Predictions
Recommendation system deep learning articles-DCN网络介绍(2)_来自Daisyand her one-way ticket-CSDN博客_dcn网络
RetinaNet:Focal Loss for Dense Object Detection
RetinaNet论文理解_JustForYou的博客-CSDN博客_retinanet
Mask R-CNN:
【Mask RCNN】论文详解(真的很详细)_Coffee flavored coffee-CSDN博客_mask rcnn

召回率:4 / 5
精度:4 / 6
漏检率:1 / 6
边栏推荐
- Input length must be multiple of 8 when decrypting with padded cipher
- Anaconda配置环境指令
- Duplicate entry ‘XXX‘ for key ‘XXX.PRIMARY‘解决方案。
- MySQL优化之慢日志查询
- wx.miniProgram.navigateTo在web-view中跳回小程序并传参
- 剑指offer专项突击版 ---- 第2天
- 面试官,不要再问我三次握手和四次挥手
- centos7安装mysql5.7步骤(图解版)
- 剑指offer专项突击版 ---第 5 天
- 【MySQL8入门到精通】基础篇- Linux系统静默安装MySQL,跨版本升级
猜你喜欢

精解四大集合框架:List 核心知识总结

The interviewer asked me how to divide the database and the table?Fortunately, I summed up a set of eight-part essays

mysql stored procedure

Multiple table query of sql statement
![[MQ I can speak for an hour]](/img/ef/863c994ac3a7de157bd39545218558.jpg)
[MQ I can speak for an hour]

快速掌握并发编程 --- 基础篇
![2022-07-30:以下go语言代码输出什么?A:[]byte{} []byte;B:[]byte{} []uint8;C:[]uint8{} []byte;D:[]uin8{} []uint8。](/img/7f/130a9b733855a2bab07d26ffda2c49.png)
2022-07-30:以下go语言代码输出什么?A:[]byte{} []byte;B:[]byte{} []uint8;C:[]uint8{} []byte;D:[]uin8{} []uint8。

CentOS7 —— yum安装mysql

如何将项目部署到服务器上(全套教程)

12 reasons for MySQL slow query
随机推荐
Goodbye to the cumbersome Excel, mastering data analysis and processing technology depends on it
mysql存储过程
剑指offer专项突击版 ---第 5 天
剑指offer专项突击版 --- 第 3 天
MySQL事务隔离级别详解
剑指offer专项突击版 ---- 第 6 天
ABC D - Distinct Trio (Number of k-tuples
MySQL8.0.26安装配置教程(windows 64位)
C语言教程(一)-准备
剑指offer专项突击版 ---- 第2天
12 reasons for MySQL slow query
Multiple table query of sql statement
2022-07-30:以下go语言代码输出什么?A:[]byte{} []byte;B:[]byte{} []uint8;C:[]uint8{} []byte;D:[]uin8{} []uint8。
C语言教程(二)-printf及c自带的数据类型
Centos7 install mysql5.7 steps (graphical version)
面试官,不要再问我三次握手和四次挥手
SQL row-column conversion
MySQL优化:从十几秒优化到三百毫秒
[mysql improves query efficiency] Mysql database query is slow to solve the problem
mysql uses on duplicate key update to update data in batches