当前位置:网站首页>Object Detection Study Notes
Object Detection Study Notes
2022-07-31 05:32:00 【Cheng-O】
研究背景
Three popular directions of computer:计算机视觉、自然语言处理(NLP)以及语音识别
计算机视觉研究方向:
物体识别和检测
Find common objects in pictures,and output its category and location,比如:人脸检测,车辆检测
识别:Classify which samples are the target
检测:Detect informative features from random noisy images
word segmentation
Classify each pixel in the image,It is equivalent to segmenting the target in the picture
运动和跟踪
The position and size of the target are given at the beginning of the video,Then follow it up in the video follow-up
视觉问答
The purpose is based on the input image,由用户进行提问,而算法自动根据提问内容进行回答
The meaning of object detection
From a research perspective,It is one of the fundamental problems of computer vision,It is the basis of many high-level vision tasks
High-level vision tasks:人脸识别、Pedestrian re-identification、目标跟踪、图像分类
应用角度看,A wide range of application requirements have been expressed
Object detection applications:人脸解锁、视频监控、Statistics of people entering and leaving、辅助驾驶、自动驾驶
发展脉络
The single-stage method requires only one correction of the anchor box to get the final result,The multi-stage method requires multiple corrections.
传统方法
Take advantage of handcrafted features+分类器,以Sliding window method在图像金字塔Iterates over all positions and sizes,进行物体检测
The sliding window method traverses all the positions,Image pyramids are traversed at different sizes
常用数据集
General object detection dataset
人脸检测数据集
评价指标
检测精度
Divide and overlap ratios(IoU)= 交集面积 / 并集面积
召回率 = The number of ground-truth annotations that are recalled(Number of callout pairs)/ The number of true annotations(Number of actual targets)
精度 = 真正例的数量(Number of callout pairs) / The number of test results(Quantity detected)
The recall is to see whether the detection is comprehensive,Accuracy depends on whether the detection is accurate
平均精度均值(mAP ) All species average precision(AP)的均值
平均精度 精度-召回率曲线下的面积
漏检率(Miss rate) = 漏检的数量 / The number of true annotations
Average number of false picks per image(FPPI)= The number of missed checks / 图片数
检测速度
前传耗时(ms) = The time taken from inputting an image to outputting the final result
每秒帧数(FPS)= The number of images that can be processed per second
作业
Overfeat:Integrated Recognition, Localization and Detection using Convolutional Networks
R-CNN:
R-CNN论文详解(论文翻译)_Cheese的博客-CSDN博客_r-cnn
fast RCNN:
Fast R-CNN论文详解_WoPawn的博客-CSDN博客_fasterrcnn论文
faster-RCNN
Faster R-CNN文章详细解读_Michael’s Blog-CSDN博客
FPN:feature pyramid networks for object detection
FPN(feature pyramid networks)算法讲解_AI之路-CSDN博客_feature pyramid
YOLO:
YOLO系列算法精讲:从yolov1至yolov4的进阶之路(2万字超全整理,建议收藏!)_不积跬步,无以至千里!-CSDN博客_yolo系列算法
SSD:
SSD原理解读-从入门到精通_QQBrother's column-CSDN博客_ssd原理
R-FCN:object detection via region-based fully convolutional networks
R-FCN算法及Caffe代码详解_AI之路-CSDN博客_fcn代码详解
DCN:Deep & Cross Network for Ad Click Predictions
Recommendation system deep learning articles-DCN网络介绍(2)_来自Daisyand her one-way ticket-CSDN博客_dcn网络
RetinaNet:Focal Loss for Dense Object Detection
RetinaNet论文理解_JustForYou的博客-CSDN博客_retinanet
Mask R-CNN:
【Mask RCNN】论文详解(真的很详细)_Coffee flavored coffee-CSDN博客_mask rcnn
召回率:4 / 5
精度:4 / 6
漏检率:1 / 6
边栏推荐
- TOGAF之架构标准规范(一)
- Unity resources management series: Unity framework how to resource management
- The monitoring of Doris study notes
- SQL injection of DVWA
- Duplicate entry ‘XXX‘ for key ‘XXX.PRIMARY‘解决方案。
- MySQL_关于JSON数据的查询
- Distributed Transactions - Introduction to Distributed Transactions, Distributed Transaction Framework Seata (AT Mode, Tcc Mode, Tcc Vs AT), Distributed Transactions - MQ
- A complete introduction to JSqlParse of Sql parsing and conversion
- 运用flask框架发送短信验证码的流程及具体代码
- DVWA installation tutorial (understand what you don't understand · in detail)
猜你喜欢
MySQL8.0安装教程,在Linux环境安装MySQL8.0教程,最新教程 超详细
Three oj questions on leetcode
剑指offer基础版 ----第31天
【MQ我可以讲一个小时】
matlab abel变换图片处理
A complete introduction to JSqlParse of Sql parsing and conversion
110道 MySQL面试题及答案 (持续更新)
剑指offer专项突击版 ---- 第 6 天
sql statement - how to query data in another table based on the data in one table
【JS面试题】面试官:“[1,2,3].map(parseInt)“ 输出结果是什么?答上来就算你通过面试
随机推荐
质量小议12 -- 以测代评
工作流编排引擎-Temporal
docker安装postgresSQL和设置自定义数据目录
信息系统项目管理师核心考点(五十五)配置管理员(CMO)的工作
有了MVC,为什么还要DDD?
剑指offer基础版--- 第23天
mysql stored procedure
关于小白安装nodejs遇到的问题(npm WARN config global `--global`, `--local` are deprecated. Use `--location=glob)
面试官,不要再问我三次握手和四次挥手
CentOS7 - yum install mysql
剑指offer专项突击版 ---- 第2天
Refinement of the four major collection frameworks: Summary of List core knowledge
SQL statement to range query time field
MySQL window function
C语言教程(一)-准备
centos7安装mysql5.7步骤(图解版)
Quickly master concurrent programming --- the basics
剑指offer专项突击版 ---第 5 天
数据集划分以及交叉验证法
matlab abel变换图片处理