当前位置:网站首页>Object Detection Study Notes
Object Detection Study Notes
2022-07-31 05:32:00 【Cheng-O】
研究背景
Three popular directions of computer:计算机视觉、自然语言处理(NLP)以及语音识别
计算机视觉研究方向:
物体识别和检测
Find common objects in pictures,and output its category and location,比如:人脸检测,车辆检测
识别:Classify which samples are the target
检测:Detect informative features from random noisy images
word segmentation
Classify each pixel in the image,It is equivalent to segmenting the target in the picture
运动和跟踪
The position and size of the target are given at the beginning of the video,Then follow it up in the video follow-up
视觉问答
The purpose is based on the input image,由用户进行提问,而算法自动根据提问内容进行回答


The meaning of object detection
From a research perspective,It is one of the fundamental problems of computer vision,It is the basis of many high-level vision tasks
High-level vision tasks:人脸识别、Pedestrian re-identification、目标跟踪、图像分类
应用角度看,A wide range of application requirements have been expressed
Object detection applications:人脸解锁、视频监控、Statistics of people entering and leaving、辅助驾驶、自动驾驶
发展脉络


The single-stage method requires only one correction of the anchor box to get the final result,The multi-stage method requires multiple corrections.
传统方法
Take advantage of handcrafted features+分类器,以Sliding window method在图像金字塔Iterates over all positions and sizes,进行物体检测
The sliding window method traverses all the positions,Image pyramids are traversed at different sizes
常用数据集

General object detection dataset

人脸检测数据集

评价指标
检测精度
Divide and overlap ratios(IoU)= 交集面积 / 并集面积
召回率 = The number of ground-truth annotations that are recalled(Number of callout pairs)/ The number of true annotations(Number of actual targets)
精度 = 真正例的数量(Number of callout pairs) / The number of test results(Quantity detected)
The recall is to see whether the detection is comprehensive,Accuracy depends on whether the detection is accurate
平均精度均值(mAP ) All species average precision(AP)的均值
平均精度 精度-召回率曲线下的面积
漏检率(Miss rate) = 漏检的数量 / The number of true annotations
Average number of false picks per image(FPPI)= The number of missed checks / 图片数
检测速度
前传耗时(ms) = The time taken from inputting an image to outputting the final result
每秒帧数(FPS)= The number of images that can be processed per second
作业

Overfeat:Integrated Recognition, Localization and Detection using Convolutional Networks
R-CNN:
R-CNN论文详解(论文翻译)_Cheese的博客-CSDN博客_r-cnn
fast RCNN:
Fast R-CNN论文详解_WoPawn的博客-CSDN博客_fasterrcnn论文
faster-RCNN
Faster R-CNN文章详细解读_Michael’s Blog-CSDN博客
FPN:feature pyramid networks for object detection
FPN(feature pyramid networks)算法讲解_AI之路-CSDN博客_feature pyramid
YOLO:
YOLO系列算法精讲:从yolov1至yolov4的进阶之路(2万字超全整理,建议收藏!)_不积跬步,无以至千里!-CSDN博客_yolo系列算法
SSD:
SSD原理解读-从入门到精通_QQBrother's column-CSDN博客_ssd原理
R-FCN:object detection via region-based fully convolutional networks
R-FCN算法及Caffe代码详解_AI之路-CSDN博客_fcn代码详解
DCN:Deep & Cross Network for Ad Click Predictions
Recommendation system deep learning articles-DCN网络介绍(2)_来自Daisyand her one-way ticket-CSDN博客_dcn网络
RetinaNet:Focal Loss for Dense Object Detection
RetinaNet论文理解_JustForYou的博客-CSDN博客_retinanet
Mask R-CNN:
【Mask RCNN】论文详解(真的很详细)_Coffee flavored coffee-CSDN博客_mask rcnn

召回率:4 / 5
精度:4 / 6
漏检率:1 / 6
边栏推荐
- Summary of MySQL common interview questions (recommended collection!!!)
- 12 reasons for MySQL slow query
- centos7安装mysql5.7步骤(图解版)
- The interviewer asked me TCP three handshake and four wave, I really
- 110 MySQL interview questions and answers (continuously updated)
- MySQL (updating)
- Go中间件
- pycharm专业版使用
- Simple read operation of EasyExcel
- 快速掌握并发编程 --- 基础篇
猜你喜欢

如何将项目部署到服务器上(全套教程)

Lock wait timeout exceeded解决方案

centos7安装mysql5.7

Simple read operation of EasyExcel

Tapdata 与 Apache Doris 完成兼容性互认证,共建新一代数据架构

CentOS7 —— yum安装mysql

Sql解析转换之JSqlParse完整介绍

sql statement - how to query data in another table based on the data in one table

Quickly master concurrent programming --- the basics

MYSQL下载及安装完整教程
随机推荐
C语言如何分辨大小端
DVWA installation tutorial (understand what you don't understand · in detail)
Linux系统安装mysql(rpm方式安装)
Temporal线上部署
【mysql 提高查询效率】Mysql 数据库查询好慢问题解决
STM32——DMA
CentOS7 install MySQL graphic detailed tutorial
ES source code API call link source code analysis
Quickly master concurrent programming --- the basics
Three oj questions on leetcode
MySQL optimization: from ten seconds to three hundred milliseconds
mysql 的简单运用命令
1. 获取数据-requests.get()
[MQ I can speak for an hour]
pycharm专业版使用
目标检测学习笔记
SQL injection of DVWA
The interviewer asked me how to divide the database and the table?Fortunately, I summed up a set of eight-part essays
Summary of MySQL common interview questions (recommended collection!!!)
MySQL optimization slow log query