当前位置:网站首页>Pytoch official fast r-cnn source code analysis (I) -- feature extraction
Pytoch official fast r-cnn source code analysis (I) -- feature extraction
2022-06-12 12:59:00 【hhhcbw】
In depth Pytorch official Faster R-CNN Source code , Bloggers will explain every code in as much detail as possible , If it helps you, you can pay attention to it and praise it , There are questions in the comments section , Bloggers will try their best to answer .
Faster R-CNN Thesis link
Pytorch official Faster R-CNN Link to the code documentation for .
Pytorch The official example code is as follows :
import torch
import torchvision
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
# For training
images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)
boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4]
labels = torch.randint(1, 91, (4, 11))
images = list(image for image in images)
targets = []
for i in range(len(images)):
d = {
'boxes': boxes[i], 'labels': labels[i]}
targets.append(d)
output = model(images, targets)
# For inference
model.eval()
x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
predictions = model(x)
# optionally, if you want to export the model to ONNX:
torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
The following is a detailed description of the sample code .
First , initialization Faster R-CNN Model .
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
It can be seen that , The backbone network is used here Resnet-50-FPN Of Faster R-CNN. Next Debug Enter the internal code .
def fasterrcnn_resnet50_fpn(pretrained=False, progress=True,
num_classes=91, pretrained_backbone=True, trainable_backbone_layers=3, **kwargs):
""" Constructs a Faster R-CNN model with a ResNet-50-FPN backbone. Building a backbone network is ResNet-50-FPN Of Faster R-CNN Model . The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each image, and should be in ``0-1`` range. Different images can have different sizes. The input to the model should be an input from tensors A list of components , Every tensor The shape of is [C,H,W], For each image, the element value should be in [0,1] Within the scope of , Different images have different sizes . The behavior of the model changes depending if it is in training or evaluation mode. The model has two modes: training and evaluation , The performance of the model depends on the model . During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with values of ``x`` between ``0`` and ``W`` and values of ``y`` between ``0`` and ``H`` - labels (``Int64Tensor[N]``): the class label for each ground-truth box In the process of training , The model needs to input the tensor, And the goal ( A list of dictionaries ), It contains : - Frame (FloatTensor[N,4]): The real box is [x1,y1,x2,y2] In the form of ,x The value of the 0~W Between ,y The value of the 0-H Between . - label (Int64Tensor[N]): Category labels for each real box . The model returns a ``Dict[Tensor]`` during training, containing the classification and regression losses for both the RPN and the R-CNN. During training , The model returns a ”Dict[Tensor]“, contain RPN And R-CNN Classification of stages and regression losses . During inference, the model requires only the input tensors, and returns the post-processed predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as follows: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with values of ``x`` between ``0`` and ``W`` and values of ``y`` between ``0`` and ``H`` - labels (``Int64Tensor[N]``): the predicted labels for each image - scores (``Tensor[N]``): the scores or each prediction In the process of reasoning , The model only needs to input the tensor, Then return the post-processing prediction results to "List[Dict[Tensor]]" In the form of , For each input image , Its "Dict" The fields are as follows : - Frame (FloatTensor[N,4]): The prediction box is [x1,y1,x2,y2] In the form of ,x The value of the 0~W Between ,y The value of the 0~H Between . - label (Int64Tensor[N]): Prediction labels for each image . - fraction (Tensor[N]): Score per forecast . Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size. Faster R—CNN Can be exported as a fixed batch size field fixed size input image ONNX Format . Arguments: pretrained (bool): If True, returns a model pre-trained on COCO train2017 progress (bool): If True, displays a progress bar of the download to stderr pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet num_classes (int): number of output classes of the model (including the background) trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. Parameters : pretrianed(bool): If it is true , Return to a COCO train2017 The pre training model on . progress(bool): If it is true , Display the download progress bar on the screen . pretrained_backbone(bool): If it is true , Return to a Imagenet Backbone network pre training model on . num_classes(int): Number of types of model output ( Including background ). trainable_backbone_layers(int): Start with the last block ResNet Number of layers ( Not frozen ). The legal value is 0~5 Between ,5 This means that all layers of the backbone network are trainable . """
# Use assert Judge trainable_backbone_layers Whether the value of is legal
assert trainable_backbone_layers <= 5 and trainable_backbone_layers >= 0
# dont freeze any layers if pretrained model or backbone is not used
# If the pre training model or the pre training backbone network is not used , Do not freeze any layers .
if not (pretrained or pretrained_backbone):
trainable_backbone_layers = 5
if pretrained:
# no need to download the backbone if pretrained is set
# If the pre training model is used , There is no need to download the pre training backbone
pretrained_backbone = False
# obtain ResNet_FPN Backbone network
backbone = resnet_fpn_backbone('resnet50', pretrained_backbone, trainable_layers=trainable_backbone_layers)
# obtain Faster R-CNN Model
model = FasterRCNN(backbone, num_classes, **kwargs)
if pretrained:
# If you use a pre training model , Download the relevant pre training model configuration
state_dict = load_state_dict_from_url(model_urls['fasterrcnn_resnet50_fpn_coco'],
progress=progress)
# Load the model configuration into the model
model.load_state_dict(state_dict)
return model # Back to the model
Debug Access ResNet_FPN Corresponding code of backbone network .
def resnet_fpn_backbone(
backbone_name,
pretrained,
norm_layer=misc_nn_ops.FrozenBatchNorm2d,
trainable_layers=3,
returned_layers=None,
extra_blocks=None
):
""" Constructs a specified ResNet backbone with FPN on top. Freezes the specified number of layers in the backbone. Build one that adds... At the top FPN Of ResNet Backbone network . Freeze the specified number of layers in the backbone network . Examples:: >>> from torchvision.models.detection.backbone_utils import resnet_fpn_backbone >>> backbone = resnet_fpn_backbone('resnet50', pretrained=True, trainable_layers=3) >>> # get some dummy image >>> x = torch.rand(1,3,64,64) >>> # compute the output >>> output = backbone(x) >>> print([(k, v.shape) for k, v in output.items()]) >>> # returns >>> [('0', torch.Size([1, 256, 16, 16])), >>> ('1', torch.Size([1, 256, 8, 8])), >>> ('2', torch.Size([1, 256, 4, 4])), >>> ('3', torch.Size([1, 256, 2, 2])), >>> ('pool', torch.Size([1, 256, 1, 1]))] Arguments: backbone_name (string): resnet architecture. Possible values are 'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2' norm_layer (torchvision.ops): it is recommended to use the default value. For details visit: (https://github.com/facebookresearch/maskrcnn-benchmark/issues/267) pretrained (bool): If True, returns a model with backbone pre-trained on Imagenet trainable_layers (int): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. Parameters : backbone_name (string):resnet framework . The possible value is 'ResNet','resnet18','resnet34','resnet50','resnet101','resnet152', 'resnext50_32x4d','resnet101_32x8d','wide_resnet50_2','wide_resnet101_2' norm_layer (torchivision.ops): It is recommended to use the default value . For details, please visit : (https://github.com/facebookresearch/maskrcnn-benchmark/issues/267) pretrained (bool): If it is true , Return to a Imagenet Pre training backbone network model on trainable_layers (int): Start with the last block ResNet Number of layers ( Not frozen ). The legal value is 0~5 Between ,5 This means that all layers of the backbone network are trainable . """
backbone = resnet.__dict__[backbone_name](
pretrained=pretrained,
norm_layer=norm_layer) # obtain resnet-50 Backbone network
# select layers that wont be frozen
# Select the frozen layer ( Don't take part in training )
assert trainable_layers <= 5 and trainable_layers >= 0
layers_to_train = ['layer4', 'layer3', 'layer2', 'layer1', 'conv1'][:trainable_layers]
# freeze layers only if pretrained backbone is used
# The layer is frozen only when the pre training backbone network is used
for name, parameter in backbone.named_parameters():
if all([not name.startswith(layer) for layer in layers_to_train]):
parameter.requires_grad_(False)
if extra_blocks is None:
extra_blocks = LastLevelMaxPool()
if returned_layers is None:
returned_layers = [1, 2, 3, 4]
assert min(returned_layers) > 0 and max(returned_layers) < 5
return_layers = {
f'layer{
k}': str(v) for v, k in enumerate(returned_layers)}
in_channels_stage2 = backbone.inplanes // 8
in_channels_list = [in_channels_stage2 * 2 ** (i - 1) for i in returned_layers]
out_channels = 256
return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
Debug Access ResNet-50 The code of the backbone network .
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x):
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def forward(self, x):
return self._forward_impl(x)
ResNet-50 The network structure of is shown in the figure below .
ResNet-50 Adopted BottleNeck structure , Their ratio BasicNeck Save more parameters . The code is as follows :
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
At last we got ResNet-50 Network structure :
ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): FrozenBatchNorm2d(64)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(64)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(256)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): FrozenBatchNorm2d(256)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(64)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(256)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(64)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(64)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(256)
(relu): ReLU(inplace=True)
)
)
(layer2): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(128)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(512)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): FrozenBatchNorm2d(512)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(128)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(512)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(128)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(512)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(128)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(128)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(512)
(relu): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(256)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(1024)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): FrozenBatchNorm2d(1024)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(256)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(1024)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(256)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(1024)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(256)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(1024)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(256)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(1024)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(256)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(256)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(1024)
(relu): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(512)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(512)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(2048)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): FrozenBatchNorm2d(2048)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(512)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(512)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(2048)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(512)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(512)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(2048)
(relu): ReLU(inplace=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=2048, out_features=1000, bias=True)
)
After that, it was added as FPN.
As shown in the figure above ,FPN It is possible to build feature pyramids with strong semantics at various scales , The specific principle can be seen in This blog .FPN Get... Here ResNet-50 The feature map extracted at each stage plus the last feature map of the maximum pool is a total of five feature maps . The code is as follows :
def forward(self, x: Dict[str, Tensor]) -> Dict[str, Tensor]:
""" Computes the FPN for a set of feature maps. Arguments: x (OrderedDict[Tensor]): feature maps for each feature level. Returns: results (OrderedDict[Tensor]): feature maps after FPN layers. They are ordered from highest resolution first. """
# unpack OrderedDict into two lists for easier handling
names = list(x.keys())
x = list(x.values())
last_inner = self.get_result_from_inner_blocks(x[-1], -1)
results = []
results.append(self.get_result_from_layer_blocks(last_inner, -1))
for idx in range(len(x) - 2, -1, -1):
inner_lateral = self.get_result_from_inner_blocks(x[idx], idx) # 1x1 Convolution reduces the number of channels to 256
feat_shape = inner_lateral.shape[-2:]
inner_top_down = F.interpolate(last_inner, size=feat_shape, mode="nearest") # On the sampling
last_inner = inner_lateral + inner_top_down # Transverse connection
results.insert(0, self.get_result_from_layer_blocks(last_inner, idx)) # 3x3 Convolution to eliminate aliasing effect
if self.extra_blocks is not None:
results, names = self.extra_blocks(results, x, names) # Maximize the pool to obtain the characteristic map of the fifth layer
# make it back an OrderedDict
out = OrderedDict([(k, v) for k, v in zip(names, results)])
return out
thus , Feature map extraction has been completed , Next, we will carry on RPN( Generation of regions of interest ).
边栏推荐
- "New continent" of mobile application going to sea
- Buu question brushing record - 7
- Binary tree (thoughts)
- Unittest framework
- 一行代码实现shell if else逻辑
- 嵌入式系统概述3-嵌入式系统的开发流程和学习基础、方法
- 手把手教你IDEA创建SSM项目结构
- [cloud native | kubernetes] actual combat of ingress case
- A "murder case" caused by ES setting operation
- Chaotic engineering practice of distributed kV storage in station B
猜你喜欢
STM32F1与STM32CubeIDE编程实例-设备驱动-EEPROM-AT24C256驱动
Dasctf Sept x Zhejiang University of technology autumn challenge Web
itk itk::BSplineDeformableTransform
Openmax (OMX) framework
unittest框架
442个作者100页论文!谷歌耗时2年发布大模型新基准BIG-Bench | 开源
OpenMAX (OMX)框架
Structure matérielle du système embarqué - introduction du Conseil de développement embarqué basé sur arm
How to balance multiple losses in deep learning?
嵌入式系统概述1-嵌入式系统定义、特点和发展历程
随机推荐
从基础到源码统统帮你搞定,技术详细介绍
嵌入式系统硬件构成-嵌入式系统硬件体系结构
Overview of embedded system 3- development process, learning basis and methods of embedded system
Openmax (OMX) framework
手把手教你IDEA创建SSM项目结构
[cloud native | kubernetes] learn more about ingress
什么时候运用二分搜索
How to balance multiple losses in deep learning?
The goods are full. You must take this knowledge
Eight misunderstandings are broken one by one (2): poor performance? Fewer applications? You worry a lot about the cloud!
Typeof and instanceof, how to simulate the implementation of an instanceof? Is there a general detection data type?
Robot Jacobian solution
Newoj week 10 question solution
import torch_geometric 第一个图网络例子
用PyTorch进行语义分割
Binary tree (program)
常数时间删除/查找数组中的任意元素
号称下一代监控系统!来看看它有多牛逼
一行代码实现shell if else逻辑
C language [23] classic interview questions [2]