当前位置:网站首页>Petri net-2, directed net
Petri net-2, directed net
2022-08-03 13:55:00 【Old stubborn and cute】
petri网
2、有向网
三元组 N = ( S , T ; F ) N=(S,T;F) N=(S,T;F) directed net,如果
表达式 | 含义 |
---|---|
S ⋃ T ≠ ∅ S \bigcup T \neq \emptyset S⋃T=∅ | 非空 |
⋀ S ⋂ T ≠ ∅ \bigwedge S \bigcap T \neq \emptyset ⋀S⋂T=∅ | 两类元素 |
⋀ F ⊆ S × T ⋃ T × S \bigwedge F \subseteq S \times T \bigcup T \times S ⋀F⊆S×T⋃T×S | 两种关系 |
⋀ d o m ( F ) ⋃ c o d ( F ) = S ⋃ T \bigwedge dom(F) \bigcup cod(F) = S \bigcup T ⋀dom(F)⋃cod(F)=S⋃T | No isolated elements |
其中:
- d o m ( F ) = { x ∣ ∃ y : ( x , y ) ∈ F } dom(F) = \{x| \exists y:(x,y)\in F \} dom(F)={ x∣∃y:(x,y)∈F}
- c o d ( F ) = { y ∣ ∃ x : ( x , y ) ∈ F } cod(F) = \{y| \exists x:(x,y)\in F \} cod(F)={ y∣∃x:(x,y)∈F}
例1:
- S = { c , x , q , d } S=\{c,x,q,d\} S={ c,x,q,d}
- T = { c x , x q , q d , d c } T=\{cx,xq,qd,dc\} T={ cx,xq,qd,dc}
- F = { ( c , c x ) , ( c x , x ) , ( x , x q ) , ( x q , q ) , ( q , q d ) , ( q d , d ) , ( d , d c ) , ( d c , c ) } F=\{(c,cx),(cx,x),(x,xq),(xq,q),(q,qd),(qd,d),(d,dc),(dc,c)\} F={(c,cx),(cx,x),(x,xq),(xq,q),(q,qd),(qd,d),(d,dc),(dc,c)}
- N 1 = { S , T ; F } N_1=\{S,T;F\} N1={ S,T;F}
例2:
2.1 基本元素
- S S S 元素: place 库所
- T T T 元素:transition 变迁(不是迁移,more than just moving,This qualitative change,variable)
- F:flow relation 流关系
2.2 Expression comparison
- semi-formal definition:易读,suitable for written communication
- 形式化定义:suitable for introducing mathematical methods,Facilitate automatic processing
- 图形表示:直观 便于交流,Highlight the reticular structure,No need to name elements when communicating face-to-face
例3:
- 上图是 N = ( { S 1 , S 2 } , { t } ; { ( S 1 , t ) , ( t , S 2 ) } ) N=(\{S_1,S_2\},\{t\};\{(S_1,t),(t,S_2)\}) N=({ S1,S2},{ t};{(S1,t),(t,S2)}) A graphical representation of the?
- in the sense of isomorphism,是(同构:One-to-one correspondence between like elements,包括 F F F )
例4:
- Is this a directed network?
- 可以看成一个,也可以看成两个.The definition does not clearly specify whether or not to connect.
- 但是,Since the two parts are not connected,Why study together?This is triggered from the actual application.
2.3 连通性
弱连通
强连通,Remove an edge and still connect
不连通,The last two no connection
2.4 Simple net、简单网
Do directed nets allow the following structure??
不单纯(单纯性)
不简单(简单性)
repeating arc,不能出现
2.4.1 术语:前集、后集
X = S ⋃ T X = S \bigcup T X=S⋃T node set element set of directed net
x , y ∈ X f ( x ) = { . x = { y ∣ ( y , x ) ∈ F } , x the first episode of x . = { y ∣ ( x , y ) ∈ F } , x after the episode x,y \in X \\ f(x)=\left\{ \begin{aligned} ^.x & = & \{y|(y,x)\in F\} & , &xthe first episode of \\ x^. & = & \{y|(x,y)\in F\} & , &xafter the episode \end{aligned} \right. x,y∈Xf(x)={ .xx.=={ y∣(y,x)∈F}{ y∣(x,y)∈F},,xthe first episode ofxafter the episode
2.4.2 Simple net、简单网、连通网
2.4.2.1 Simple net definition
∀ x ∈ X : . x ∩ x . ≠ ∅ \forall x \in X:\\ ^.x \cap x^. \neq \empty ∀x∈X:.x∩x.=∅
2.4.2.2 Simple net definition
∀ x , y ∈ X : . x = . y ⋀ x . = y . ⋀ x ≠ y \forall x,y \in X:\\ ^.x=^.y\bigwedge x^.=y^.\bigwedge x\neq y ∀x,y∈X:.x=.y⋀x.=y.⋀x=y
2.4.2.3 连通图定义
∀ x , y ∈ X : ( x , y ) ∈ ( F ∪ F − 1 ) + 其中 F − 1 = { ( a , b ) ∣ ( b , a ) ∈ F } \forall x,y \in X:\\ (x,y)\in (F\cup F^{-1})^+\\ 其中 F^{-1}=\{(a,b)|(b,a)\in F\} ∀x,y∈X:(x,y)∈(F∪F−1)+其中F−1={(a,b)∣(b,a)∈F}
2.4.2.4 Repeating Arc Problem
Not allowed to repeat the arc
2.4.2.5 Dual network and reciprocal network
N = ( S , T ; F ) , N ′ = ( S ′ , T ′ ; F ′ ) 为有向网 N 和 N ′ For the dual network , 如果 S ′ = T ⋀ T ′ = S ⋀ F ′ = F N 和 N ′ reciprocal network , 如果 S ′ = S ⋀ T ′ = T ⋀ F ′ = F − 1 N=(S,T;F), N'=(S',T';F') 为有向网\\ N和N'For the dual network,如果 S'=T\bigwedge T'=S\bigwedge F'=F\\ N和N'reciprocal network,如果 S'=S\bigwedge T'=T\bigwedge F'=F^{-1}\\ N=(S,T;F),N′=(S′,T′;F′)为有向网N和N′For the dual network,如果S′=T⋀T′=S⋀F′=FN和N′reciprocal network,如果S′=S⋀T′=T⋀F′=F−1
The following two network is the same network,同为 N = ( { S 1 , S 2 } , { t } ; { ( S 1 , t ) , { t , S 2 } } ) N=(\{S_1,S_2\},\{t\};\{(S_1,t),\{t,S_2\}\}) N=({ S1,S2},{ t};{(S1,t),{ t,S2}}) 的图示
2.4.3 cable network & Infinite network
A directed net can have a finite number of elements,There can also be an uncountable finite number of elements ∣ S ∪ T ∣ < ∞ |S\cup T|<\infty ∣S∪T∣<∞
- cable network
- 人造系统:能力有限
- 自然规律(like the changing seasons):局部观察
- Infinite network
- Documenting natural change that never ends
- 理论研究(图灵机)
2.5 出现网
record what happened
例5:
2.6 Basic Concept Definition Golden Rule
not necessary to include,it is necessary not to include
2.6.1 Directed net definition does not contain
- 连通性
- 单纯性
- 简洁性
- 有限性
2.6.2 Directed network concept
- Basic concepts are concise
- Flexibility to introduce subsequent concepts
边栏推荐
- 有哪些好用的IT资产管理平台?
- 冷链行业商业供应链系统:实现全流程数字化协同,激活企业迸发市场活力
- 国产替代风潮下,电子元器件B2B商城系统如何助力企业突围市场竞争
- English语法_介词 - 概述
- [Practical skills] APP video tutorial for updating APP in CANFD, I2C, SPI and serial port mode of single-chip bootloader (2022-08-01)
- 投资75亿卢比!印度宣布建首座存储芯片组装和封测工厂,将于12月量产
- 回流和重绘
- 农产品企业如何进行全网营销?
- 飞桨开源社区季度报告来啦,你想知道的都在这里
- ideaIU-2020.1下载
猜你喜欢
PyTorch framework to train linear regression model (CPU and GPU environment)
[微服务]多级缓存
如何合理安排一天,做到高效备考?
HCIP Fifteenth Day Notes (Three-layer Architecture of Enterprise Network, VLAN and VLAN Configuration)
网易互娱在秒级监控、服务限流、AIOps落地上的运维升级实践
使用Typora+EasyBlogImageForTypora写博客,无图床快速上传图片
保健用品行业B2B电子商务系统:供采交易全链路数字化,助推企业管理精细化
TiFlash 计算层概览
工具模板 | 用APOEM方法消除对用户行为的偏见
飞桨开源社区季度报告来啦,你想知道的都在这里
随机推荐
1, introduction to petri net
HCIP Fifteenth Day Notes (Three-layer Architecture of Enterprise Network, VLAN and VLAN Configuration)
Insert or Merge
PyTorch framework to train linear regression model (CPU and GPU environment)
Golang 接口 interface
软件测试考证:ISTQB、软件评测师
中英文说明书丨Abbkine AbFluor 488-鬼笔环肽
工具模板 | 用APOEM方法消除对用户行为的偏见
IDEA的模板(Templates)
Golang interface interface
Golang Mutex
半导体制造业回流美国?宏碁创始人施振荣:违反垂直分工大趋势
【web渗透】CSRF漏洞详细讲解
Jmeter use
投资75亿卢比!印度宣布建首座存储芯片组装和封测工厂,将于12月量产
tinymce 如何实现动态国际化
[Practical skills] APP video tutorial for updating APP in CANFD, I2C, SPI and serial port mode of single-chip bootloader (2022-08-01)
中国手机品牌争论谁是国内第一,而它已成为中国手机在海外的代表
数字孪生的4个最佳实践
Golang sync.WaitGroup