当前位置:网站首页>【YOLOv3 SPP 数据集准备】YOLOv3 SPP数据集准备代码理解

【YOLOv3 SPP 数据集准备】YOLOv3 SPP数据集准备代码理解

2022-08-03 05:27:00 寻找永不遗憾


本文主要参考 霹雳吧啦Wz 的代码,如果不想看文章,欢迎去看他的视频,视频链接在感谢链接中!

1 VOC数据集准备

1.1 数据集介绍

用Pascal Voc2007+2012做训练,在Pascal Voc2007上做测试,数据情况如下:

训练数据:16551张图像,共40058个目标
测试(验证)数据:4952张图像,共12032个目标

VOC数据集格式中的Annotations是.xml文件,需要使用脚本将voc数据格式(.xml)转成yolo数据格式(.txt),也就是大家常见的生成train.txt和val.txt。

提供Pascal Voc2007+2012数据集链接:

链接:https://pan.baidu.com/s/1dzoU8_kCqCXHT7smYlJ3oQ
提取码:uzei

1.2 生成需要的文件1

最终的目标如下:

├── my_yolo_dataset 自定义数据集根目录
│         ├── train   训练集目录
│         │     ├── images  训练集图像目录
│         │     └── labels  训练集标签目录 
│         └── val    验证集目录
│               ├── images  验证集图像目录
│               └── labels  验证集标签目录            
│
├── data
│        ├── my_data_label.names 数据集类别标签名称

其中,labels文件夹下的一个txt文件表示一张图片的目标框信息,举例内容如下:
[class_index, xcenter, ycenter, w, h]:第一个参数是类别id,后面四个参数是目标的相对位置

在这里插入图片描述
代码如下:

""" 本脚本有两个功能: 1.将voc数据集标注信息(.xml)转为yolo标注格式(.txt),并将图像文件复制到相应文件夹 2.根据json标签文件,生成对应names标签(my_data_label.names) """
import os
from tqdm import tqdm       # 用于进度条显示
from lxml import etree
import json
import shutil


# 原voc数据集根目录以及版本
voc_root = "D:\DeepLearning\dataset\VOCdevkit"
voc_version = "VOC2007_12"      # 和VOCdevkit下的文件夹名称一致

# 原VOC训练集以及验证集对应txt文件
train_txt = "train.txt"
val_txt = "val.txt"

# 转换后的文件保存目录
save_file_root = "./my_yolo_dataset"

# label标签对应json文件,字典
label_json_path = './data/pascal_voc_classes.json'

# 拼接出voc的images目录,xml目录,txt目录
voc_images_path = os.path.join(voc_root, voc_version, "JPEGImages")
voc_xml_path = os.path.join(voc_root, voc_version, "Annotations")
train_txt_path = os.path.join(voc_root, voc_version, "ImageSets", "Main", train_txt)
val_txt_path = os.path.join(voc_root, voc_version, "ImageSets", "Main", val_txt)

# 检查文件/文件夹都是否存在
assert os.path.exists(voc_images_path), "VOC images path not exist..."
assert os.path.exists(voc_xml_path), "VOC xml path not exist..."
assert os.path.exists(train_txt_path), "VOC train txt file not exist..."
assert os.path.exists(val_txt_path), "VOC val txt file not exist..."
assert os.path.exists(label_json_path), "label_json_path does not exist..."
if os.path.exists(save_file_root) is False:
    os.makedirs(save_file_root)


def parse_xml_to_dict(xml):
    """ 将xml文件解析成字典形式,参考tensorflow的recursive_parse_xml_to_dict Args: xml: xml tree obtained by parsing XML file contents using lxml.etree Returns: Python dictionary holding XML contents. """

    if len(xml) == 0:  # 遍历到底层,直接返回tag对应的信息
        return {
    xml.tag: xml.text}

    result = {
    }
    for child in xml:
        child_result = parse_xml_to_dict(child)  # 递归遍历标签信息
        if child.tag != 'object':
            result[child.tag] = child_result[child.tag]
        else:
            if child.tag not in result:  # 因为object可能有多个,所以需要放入列表里
                result[child.tag] = []
            result[child.tag].append(child_result[child.tag])
    return {
    xml.tag: result}


def translate_info(file_names: list, save_root: str, class_dict: dict, train_val='train'):
    """ 将对应xml文件信息转为yolo中使用的txt文件信息 :param file_names: :param save_root: :param class_dict: :param train_val: :return: """
    save_txt_path = os.path.join(save_root, train_val, "labels")
    if os.path.exists(save_txt_path) is False:
        os.makedirs(save_txt_path)
    save_images_path = os.path.join(save_root, train_val, "images")
    if os.path.exists(save_images_path) is False:
        os.makedirs(save_images_path)

    # 进度条用法:第一个参数是可迭代对象;desc参数是进度条前的说明信息
    for file in tqdm(file_names, desc="translate {} file...".format(train_val)):
        # 检查下图像文件是否存在
        img_path = os.path.join(voc_images_path, file + ".jpg")
        assert os.path.exists(img_path), "file:{} not exist...".format(img_path)

        # 检查xml文件是否存在
        xml_path = os.path.join(voc_xml_path, file + ".xml")
        assert os.path.exists(xml_path), "file:{} not exist...".format(xml_path)

        # read xml
        with open(xml_path) as fid:
            xml_str = fid.read()        # xml_str里放着xml文件中的所有字符信息
        # 此时xml里存放着乱七八糟的东西
        xml = etree.fromstring(xml_str)
        # data里存放字典,包括xml文件中的信息
        data = parse_xml_to_dict(xml)["annotation"]
        img_height = int(data["size"]["height"])
        img_width = int(data["size"]["width"])

        # write object info into txt
        assert "object" in data.keys(), "file: '{}' lack of object key.".format(xml_path)
        if len(data["object"]) == 0:
            # 如果xml文件中没有目标就直接忽略该样本
            print("Warning: in '{}' xml, there are no objects.".format(xml_path))
            continue

        with open(os.path.join(save_txt_path, file + ".txt"), "w") as f:
            for index, obj in enumerate(data["object"]):    # data["object"]是列表里装多个字典元素
                # 获取每个object的box信息
                xmin = float(obj["bndbox"]["xmin"])
                xmax = float(obj["bndbox"]["xmax"])
                ymin = float(obj["bndbox"]["ymin"])
                ymax = float(obj["bndbox"]["ymax"])
                class_name = obj["name"]
                class_index = class_dict[class_name] - 1  # 目标id从0开始

                # 进一步检查数据,有的标注信息中可能有w或h为0的情况,这样的数据会导致计算回归loss为nan
                if xmax <= xmin or ymax <= ymin:
                    print("Warning: in '{}' xml, there are some bbox w/h <=0".format(xml_path))
                    continue

                # 将box信息转换到yolo格式
                xcenter = xmin + (xmax - xmin) / 2
                ycenter = ymin + (ymax - ymin) / 2
                w = xmax - xmin
                h = ymax - ymin

                # 绝对坐标转相对坐标,保存6位小数
                xcenter = round(xcenter / img_width, 6)
                ycenter = round(ycenter / img_height, 6)
                w = round(w / img_width, 6)
                h = round(h / img_height, 6)

                info = [str(i) for i in [class_index, xcenter, ycenter, w, h]]

                if index == 0:
                    f.write(" ".join(info))
                else:
                    f.write("\n" + " ".join(info))

        # copy image into save_images_path
        # os.sep:文件的路径分隔符,保证在linux和windows上都能用
        path_copy_to = os.path.join(save_images_path, img_path.split(os.sep)[-1])
        if os.path.exists(path_copy_to) is False:
            shutil.copyfile(img_path, path_copy_to)     # 图片copy过去

# 生成my_data_label.names文件,里面存放所有数据集中的所有类别
def create_class_names(class_dict: dict):
    keys = class_dict.keys()
    with open("./data/my_data_label.names", "w") as w:
        for index, k in enumerate(keys):
            if index + 1 == len(keys):
                w.write(k)
            else:
                w.write(k + "\n")


def main():
    # read class_indict
    json_file = open(label_json_path, 'r')
    class_dict = json.load(json_file)

    # 读取train.txt中的所有行信息,删除空行
    with open(train_txt_path, "r") as r:
        train_file_names = [i for i in r.read().splitlines() if len(i.strip()) > 0]
    # voc信息转yolo,并将图像文件复制到相应文件夹
    translate_info(train_file_names, save_file_root, class_dict, "train")

    # 读取val.txt中的所有行信息,删除空行
    with open(val_txt_path, "r") as r:
        val_file_names = [i for i in r.read().splitlines() if len(i.strip()) > 0]
    # voc信息转yolo,并将图像文件复制到相应文件夹
    translate_info(val_file_names, save_file_root, class_dict, "val")

    # 创建my_data_label.names文件
    create_class_names(class_dict)


if __name__ == "__main__":
    main()

1.2 生成需要的文件2

使用calculate_dataset.py脚本生成my_train_data.txt文件、my_val_data.txt文件以及my_data.data文件,并生成新的my_yolov3.cfg文件。

  • my_train_data.txtmy_val_data.txt内容类似于:里面连空行都要正确,有点搞,目前不太喜欢这种构建网络的方式。
./my_yolo_dataset/train/images\000005.jpg
./my_yolo_dataset/train/images\000007.jpg
./my_yolo_dataset/train/images\000009.jpg
...
  • my_data.data内容如下:
classes=20
train=data/my_train_data.txt
valid=data/my_val_data.txt
names=data/my_data_label.names
  • my_yolov3.cfg用于构建网络结构,部分内容如下:
[net]
# Testing
# batch=1
# subdivisions=1
# Training
batch=64         
subdivisions=16  
...
[yolo]
mask = 6,7,8  
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
...

代码如下:

""" 该脚本有3个功能: 1.统计训练集和验证集的数据并生成相应.txt文件 2.创建data.data文件,记录classes个数, train以及val数据集文件(.txt)路径和label.names文件路径 3.根据yolov3-spp.cfg创建my_yolov3.cfg文件修改其中的predictor filters以及yolo classes参数(这两个参数是根据类别数改变的) """
import os

train_annotation_dir = "./my_yolo_dataset/train/labels"
val_annotation_dir = "./my_yolo_dataset/val/labels"
classes_label = "./data/my_data_label.names"
cfg_path = "./cfg/yolov3-spp.cfg"

assert os.path.exists(train_annotation_dir), "train_annotation_dir not exist!"
assert os.path.exists(val_annotation_dir), "val_annotation_dir not exist!"
assert os.path.exists(classes_label), "classes_label not exist!"
assert os.path.exists(cfg_path), "cfg_path not exist!"


def calculate_data_txt(txt_path, dataset_dir):
    # create my_data.txt file that record image list
    with open(txt_path, "w") as w:
        for file_name in os.listdir(dataset_dir):
            if file_name == "classes.txt":
                continue

            img_path = os.path.join(dataset_dir.replace("labels", "images"),
                                    file_name.split(".")[0]) + ".jpg"
            line = img_path + "\n"
            assert os.path.exists(img_path), "file:{} not exist!".format(img_path)
            w.write(line)


def create_data_data(create_data_path, label_path, train_path, val_path, classes_info):
    # create my_data.data file that record classes, train, valid and names info.
    # shutil.copyfile(label_path, "./data/my_data_label.names")
    with open(create_data_path, "w") as w:
        w.write("classes={}".format(len(classes_info)) + "\n")  # 记录类别个数
        w.write("train={}".format(train_path) + "\n")           # 记录训练集对应txt文件路径
        w.write("valid={}".format(val_path) + "\n")             # 记录验证集对应txt文件路径
        w.write("names=data/my_data_label.names" + "\n")        # 记录label.names文件路径


def change_and_create_cfg_file(classes_info, save_cfg_path="./cfg/my_yolov3.cfg"):
    # create my_yolov3.cfg file changed predictor filters and yolo classes param.
    # this operation only deal with yolov3-spp.cfg
    filters_lines = [636, 722, 809]
    classes_lines = [643, 729, 816]
    # cfg_lines:列表里放着每一行的str(内容)
    cfg_lines = open(cfg_path, "r").readlines()

    for i in filters_lines:
        assert "filters" in cfg_lines[i-1], "filters param is not in line:{}".format(i-1)
        output_num = (5 + len(classes_info)) * 3
        cfg_lines[i-1] = "filters={}\n".format(output_num)

    for i in classes_lines:
        assert "classes" in cfg_lines[i-1], "classes param is not in line:{}".format(i-1)
        cfg_lines[i-1] = "classes={}\n".format(len(classes_info))

    with open(save_cfg_path, "w") as w:
        w.writelines(cfg_lines)


def main():
    # 统计训练集和验证集的数据并生成相应txt文件
    train_txt_path = "data/my_train_data.txt"
    val_txt_path = "data/my_val_data.txt"
    # 把训练与测试的图片路径写到对应的txt文件里
    calculate_data_txt(train_txt_path, train_annotation_dir)
    calculate_data_txt(val_txt_path, val_annotation_dir)

    classes_info = [line.strip() for line in open(classes_label, "r").readlines() if len(line.strip()) > 0]
    # 创建data.data文件,记录classes个数, train以及val数据集文件(.txt)路径和label.names文件路径
    create_data_data("./data/my_data.data", classes_label, train_txt_path, val_txt_path, classes_info)

    # 根据yolov3-spp.cfg创建my_yolov3.cfg文件修改其中的predictor filters以及yolo classes参数(这两个参数是根据类别数改变的)
    change_and_create_cfg_file(classes_info)


if __name__ == '__main__':
    main()

2 感谢链接

https://www.bilibili.com/video/BV1t54y1C7ra/?spm_id_from=trigger_reload
原网站

版权声明
本文为[寻找永不遗憾]所创,转载请带上原文链接,感谢
https://blog.csdn.net/weixin_45377629/article/details/125019634