当前位置:网站首页>Advanced Mathematics (Seventh Edition) Tongji University exercises 3-4 personal solutions (the last 8 questions)
Advanced Mathematics (Seventh Edition) Tongji University exercises 3-4 personal solutions (the last 8 questions)
2022-07-28 03:43:00 【Navigator_ Z】
Advanced mathematics ( The seventh edition ) Tongji University exercises 3-4( after 8 topic )
9. Determine the concavity and convexity of the following curves : \begin{aligned}&9. \ Determine the concavity and convexity of the following curves :&\end{aligned} 9. Determine the concavity and convexity of the following curves :
( 1 ) y = 4 x − x 2 ; ( 2 ) y = s h x ; ( 3 ) y = x + 1 x ( x > 0 ) ; ( 4 ) y = x a r c t a n x . \begin{aligned} &\ \ (1)\ \ y=4x-x^2;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ y=sh\ x;\\\\ &\ \ (3)\ \ y=x+\frac{1}{x}\ (x \gt 0);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ y=xarctan\ x. & \end{aligned} (1) y=4x−x2; (2) y=sh x; (3) y=x+x1 (x>0); (4) y=xarctan x.
Explain :
( 1 ) y ′ = 4 − 2 x , y ′ ′ = − 2 < 0 , So the curve y = 4 x − x 2 stay ( − ∞ , + ∞ ) The inside is convex . ( 2 ) y ′ = c h x , y ′ ′ = s h x , Make y ′ ′ = 0 , have to x = 0 . When − ∞ < x < 0 when , y ′ ′ < 0 , curve y = s h x stay ( − ∞ , 0 ] It's convex . When 0 < x < + ∞ when , y ′ ′ > 0 , curve y = s h x stay [ 0 , + ∞ ) The top is concave . ( 3 ) y ′ = 1 − 1 x 2 , y ′ ′ = 2 x 3 > 0 ( x > 0 ), So the curve y = x + 1 x stay ( 0 , + ∞ ) The inside is concave . ( 4 ) y ′ = a r c t a n x + x 1 + x 2 , y ′ ′ = 1 1 + x 2 + 1 + x 2 − x ⋅ 2 x ( 1 + x 2 ) 2 = 2 ( 1 + x 2 ) 2 > 0 , So the curve y = x a r c t a n x stay ( − ∞ , + ∞ ) The inside is concave . \begin{aligned} &\ \ (1)\ y'=4-2x,y''=-2 \lt 0, So the curve y=4x-x^2 stay (-\infty, \ +\infty) The inside is convex .\\\\ &\ \ (2)\ y'=ch\ x,y''=sh\ x, Make y''=0, have to x=0.\\\\ &\ \ \ \ \ \ \ \ When -\infty \lt x \lt 0 when ,y'' \lt 0, curve y=sh\ x stay (-\infty, \ 0] It's convex .\\\\ &\ \ \ \ \ \ \ \ When 0 \lt x \lt +\infty when ,y'' \gt 0, curve y=sh\ x stay [0, \ +\infty) The top is concave .\\\\ &\ \ (3)\ y'=1-\frac{1}{x^2},y''=\frac{2}{x^3} \gt 0(x \gt 0), So the curve y=x+\frac{1}{x} stay (0, \ +\infty) The inside is concave .\\\\ &\ \ (4)\ y'=arctan\ x+\frac{x}{1+x^2},y''=\frac{1}{1+x^2}+\frac{1+x^2-x\cdot 2x}{(1+x^2)^2}=\frac{2}{(1+x^2)^2} \gt 0,\\\\ &\ \ \ \ \ \ \ \ So the curve y=xarctan\ x stay (-\infty, \ +\infty) The inside is concave . & \end{aligned} (1) y′=4−2x,y′′=−2<0, So the curve y=4x−x2 stay (−∞, +∞) The inside is convex . (2) y′=ch x,y′′=sh x, Make y′′=0, have to x=0. When −∞<x<0 when ,y′′<0, curve y=sh x stay (−∞, 0] It's convex . When 0<x<+∞ when ,y′′>0, curve y=sh x stay [0, +∞) The top is concave . (3) y′=1−x21,y′′=x32>0(x>0), So the curve y=x+x1 stay (0, +∞) The inside is concave . (4) y′=arctan x+1+x2x,y′′=1+x21+(1+x2)21+x2−x⋅2x=(1+x2)22>0, So the curve y=xarctan x stay (−∞, +∞) The inside is concave .
10. Find the inflection point and concave or convex interval of the following function graph : \begin{aligned}&10. \ Find the inflection point and concave or convex interval of the following function graph :&\end{aligned} 10. Find the inflection point and concave or convex interval of the following function graph :
( 1 ) y = x 3 − 5 x 2 + 3 x + 5 ; ( 2 ) y = x e − x ; ( 3 ) y = ( x + 1 ) 4 + e x ; ( 4 ) y = l n ( x 2 + 1 ) ; ( 5 ) y = e a r c t a n x ; ( 6 ) y = x 4 ( 12 l n x − 7 ) . \begin{aligned} &\ \ (1)\ \ y=x^3-5x^2+3x+5;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ y=xe^{-x};\\\\ &\ \ (3)\ \ y=(x+1)^4+e^x;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ y=ln(x^2+1);\\\\ &\ \ (5)\ \ y=e^{arctan\ x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ y=x^4(12ln\ x-7). & \end{aligned} (1) y=x3−5x2+3x+5; (2) y=xe−x; (3) y=(x+1)4+ex; (4) y=ln(x2+1); (5) y=earctan x; (6) y=x4(12ln x−7).
Explain :
( 1 ) y ′ = 3 x 2 − 10 x + 3 , y ′ ′ = 6 x − 10 , Make y ′ ′ = 0 , have to x = 5 3 , y = 20 27 . When − ∞ < x < 5 3 when , y ′ ′ < 0 , So the curve is ( − ∞ , 5 3 ] It's convex , When 5 3 < x < + ∞ when , y ′ ′ > 0 , So the curve is [ 5 3 , + ∞ ) The top is concave , therefore , spot ( 5 3 , 20 27 ) It's the inflection point . ( 2 ) y ′ = e − x − x e − x = ( 1 − x ) e − x , y ′ ′ = − e − x + ( 1 − x ) ( − e − x ) = e − x ( x − 2 ) . Make y ′ ′ = 0 , have to x = 2 , y = 2 e 2 . When − ∞ < x < 2 when , y ′ ′ < 0 , So the curve is ( − ∞ , 2 ] It's convex , When 2 < x < + ∞ when , y ′ ′ > 0 , So the curve is ( 2 , + ∞ ) The top is concave , therefore , spot ( 2 , 2 e 2 ) It's the inflection point . ( 3 ) y ′ = 4 ( x + 1 ) 3 + e x , y ′ ′ = 12 ( x + 1 ) 2 + e x > 0 , So the curve is ( − ∞ , + ∞ ) The inside is concave , The curve has no inflection point . ( 4 ) y ′ = 2 x x 2 + 1 , y ′ ′ = 2 ( x 2 + 1 ) − 2 x ⋅ 2 x ( x 2 + 1 ) 2 = − 2 ( x − 1 ) ( x + 1 ) ( x 2 + 1 ) 2 . Make y ′ ′ = 0 , have to x 1 = − 1 , x 2 = 1. When − ∞ < x < − 1 when , y ′ ′ < 0 , So the curve is ( − ∞ , − 1 ] It's convex , When − 1 < x < 1 when , y ′ ′ > 0 , So the curve is [ − 1 , 1 ] The top is concave , When 1 < x + ∞ when , y ′ ′ < 0 , So the curve is [ 1 , + ∞ ) It's convex . The curve has two inflection points , The difference is ( − 1 , l n 2 ) Sum point ( 1 , l n 2 ) . ( 5 ) y ′ = e a r c t a n x 1 + x 2 , y ′ ′ = − 2 e a r c t a n x ( x − 1 2 ) ( 1 + x 2 ) 2 , Make y ′ ′ = 0 , have to x = 1 2 , y = e a r c t a n 1 2 , When − ∞ < x < 1 2 when , y ′ ′ > 0 , So the curve is ( − ∞ , 1 2 ] The top is concave , When 1 2 < x < + ∞ when , y ′ ′ < 0 , So the curve is [ 1 2 , + ∞ ) Convex . So point ( 1 2 , e a r c t a n 1 2 ) It's the inflection point . ( 6 ) y ′ = 4 x 3 ( 12 l n x − 7 ) + x 4 ⋅ 12 1 x = 4 x 3 ( 12 l n x − 4 ) , y ′ ′ = 12 x 2 ( 12 l n x − 4 ) + 4 x 3 ⋅ 12 1 x = 144 x 2 l n x ( x > 0 ) . Make y ′ ′ = 0 , have to x = 1 , y = − 7 . When 0 < x < 1 when , y ′ ′ < 0 , So the curve is ( 0 , 1 ] It's convex , When 1 < x < + ∞ when , y ′ ′ > 0 , So the curve is [ 1 , + ∞ ) The top is concave , So point ( 1 , − 7 ) It's the inflection point . \begin{aligned} &\ \ (1)\ y'=3x^2-10x+3,y''=6x-10, Make y''=0, have to x=\frac{5}{3},y=\frac{20}{27}.\\\\ &\ \ \ \ \ \ \ \ When -\infty \lt x \lt \frac{5}{3} when ,y'' \lt 0, So the curve is \left(-\infty, \ \frac{5}{3}\right] It's convex ,\\\\ &\ \ \ \ \ \ \ \ When \frac{5}{3} \lt x \lt +\infty when ,y'' \gt 0, So the curve is \left[\frac{5}{3}, \ +\infty\right) The top is concave , therefore , spot \left(\frac{5}{3}, \ \frac{20}{27}\right) It's the inflection point .\\\\ &\ \ (2)\ y'=e^{-x}-xe^{-x}=(1-x)e^{-x},y''=-e^{-x}+(1-x)(-e^{-x})=e^{-x}(x-2).\\\\ &\ \ \ \ \ \ \ \ Make y''=0, have to x=2,y=\frac{2}{e^2}.\\\\ &\ \ \ \ \ \ \ \ When -\infty \lt x \lt 2 when ,y'' \lt 0, So the curve is (-\infty, \ 2] It's convex ,\\\\ &\ \ \ \ \ \ \ \ When 2 \lt x \lt +\infty when ,y'' \gt 0, So the curve is (2, \ +\infty) The top is concave , therefore , spot \left(2, \ \frac{2}{e^2}\right) It's the inflection point .\\\\ &\ \ (3)\ y'=4(x+1)^3+e^x,y''=12(x+1)^2+e^x \gt 0, So the curve is (-\infty, \ +\infty) The inside is concave , The curve has no inflection point .\\\\ &\ \ (4)\ y'=\frac{2x}{x^2+1},y''=\frac{2(x^2+1)-2x \cdot 2x}{(x^2+1)^2}=\frac{-2(x-1)(x+1)}{(x^2+1)^2}. Make y''=0, have to x_1=-1,x_2=1.\\\\ &\ \ \ \ \ \ \ \ When -\infty \lt x \lt -1 when ,y'' \lt 0, So the curve is (-\infty, \ -1] It's convex ,\\\\ &\ \ \ \ \ \ \ \ When -1 \lt x \lt 1 when ,y'' \gt 0, So the curve is [-1, \ 1] The top is concave ,\\\\ &\ \ \ \ \ \ \ \ When 1 \lt x \ +\infty when ,y'' \lt 0, So the curve is [1, \ +\infty) It's convex . The curve has two inflection points , The difference is (-1, \ ln\ 2) Sum point (1, \ ln\ 2).\\\\ &\ \ (5)\ y'=\frac{e^{arctan\ x}}{1+x^2},y''=\frac{-2e^{arctan\ x}\left(x-\frac{1}{2}\right)}{(1+x^2)^2}, Make y''=0, have to x=\frac{1}{2},y=e^{arctan\ \frac{1}{2}},\\\\ &\ \ \ \ \ \ \ \ When -\infty \lt x \lt \frac{1}{2} when ,y'' \gt 0, So the curve is \left(-\infty, \ \frac{1}{2}\right] The top is concave ,\\\\ &\ \ \ \ \ \ \ \ When \frac{1}{2} \lt x \lt +\infty when ,y'' \lt 0, So the curve is \left[\frac{1}{2}, \ +\infty\right) Convex . So point \left(\frac{1}{2}, \ e^{arctan\ \frac{1}{2}}\right) It's the inflection point .\\\\ &\ \ (6)\ y'=4x^3(12ln\ x-7)+x^4 \cdot 12\frac{1}{x}=4x^3(12ln\ x-4),y''=12x^2(12ln\ x-4)+4x^3\cdot 12\frac{1}{x}=144x^2ln\ x\ (x \gt 0).\\\\ &\ \ \ \ \ \ \ \ Make y''=0, have to x=1,y=-7. When 0 \lt x \lt 1 when ,y'' \lt 0, So the curve is (0, \ 1] It's convex ,\\\\ &\ \ \ \ \ \ \ \ When 1 \lt x \lt +\infty when ,y'' \gt 0, So the curve is [1, \ +\infty) The top is concave , So point (1, \ -7) It's the inflection point . & \end{aligned} (1) y′=3x2−10x+3,y′′=6x−10, Make y′′=0, have to x=35,y=2720. When −∞<x<35 when ,y′′<0, So the curve is (−∞, 35] It's convex , When 35<x<+∞ when ,y′′>0, So the curve is [35, +∞) The top is concave , therefore , spot (35, 2720) It's the inflection point . (2) y′=e−x−xe−x=(1−x)e−x,y′′=−e−x+(1−x)(−e−x)=e−x(x−2). Make y′′=0, have to x=2,y=e22. When −∞<x<2 when ,y′′<0, So the curve is (−∞, 2] It's convex , When 2<x<+∞ when ,y′′>0, So the curve is (2, +∞) The top is concave , therefore , spot (2, e22) It's the inflection point . (3) y′=4(x+1)3+ex,y′′=12(x+1)2+ex>0, So the curve is (−∞, +∞) The inside is concave , The curve has no inflection point . (4) y′=x2+12x,y′′=(x2+1)22(x2+1)−2x⋅2x=(x2+1)2−2(x−1)(x+1). Make y′′=0, have to x1=−1,x2=1. When −∞<x<−1 when ,y′′<0, So the curve is (−∞, −1] It's convex , When −1<x<1 when ,y′′>0, So the curve is [−1, 1] The top is concave , When 1<x +∞ when ,y′′<0, So the curve is [1, +∞) It's convex . The curve has two inflection points , The difference is (−1, ln 2) Sum point (1, ln 2). (5) y′=1+x2earctan x,y′′=(1+x2)2−2earctan x(x−21), Make y′′=0, have to x=21,y=earctan 21, When −∞<x<21 when ,y′′>0, So the curve is (−∞, 21] The top is concave , When 21<x<+∞ when ,y′′<0, So the curve is [21, +∞) Convex . So point (21, earctan 21) It's the inflection point . (6) y′=4x3(12ln x−7)+x4⋅12x1=4x3(12ln x−4),y′′=12x2(12ln x−4)+4x3⋅12x1=144x2ln x (x>0). Make y′′=0, have to x=1,y=−7. When 0<x<1 when ,y′′<0, So the curve is (0, 1] It's convex , When 1<x<+∞ when ,y′′>0, So the curve is [1, +∞) The top is concave , So point (1, −7) It's the inflection point .
11. Using the concavity and convexity of function graph , Prove the following inequality : \begin{aligned}&11. \ Using the concavity and convexity of function graph , Prove the following inequality :&\end{aligned} 11. Using the concavity and convexity of function graph , Prove the following inequality :
( 1 ) 1 2 ( x n + y n ) > ( x + y 2 ) n ( x > 0 , y > 0 , x ≠ y , n > 1 ) ; ( 2 ) e x + e y 2 > e x + y 2 ( x ≠ y ) ; ( 3 ) x l n x + y l n y > ( x + y ) l n x + y 2 ( x > 0 , y > 0 , x ≠ y ) . \begin{aligned} &\ \ (1)\ \ \frac{1}{2}(x^n+y^n) \gt \left(\frac{x+y}{2}\right)^n\ (x \gt 0,y \gt 0,x \neq y,n \gt 1);\\\\ &\ \ (2)\ \ \frac{e^x+e^y}{2} \gt e^{\frac{x+y}{2}}\ (x \neq y);\\\\ &\ \ (3)\ \ xln\ x+yln\ y \gt (x+y)ln\ \frac{x+y}{2}\ (x \gt 0,y \gt 0,x \neq y). & \end{aligned} (1) 21(xn+yn)>(2x+y)n (x>0,y>0,x=y,n>1); (2) 2ex+ey>e2x+y (x=y); (3) xln x+yln y>(x+y)ln 2x+y (x>0,y>0,x=y).
Explain :
( 1 ) take f ( t ) = t n , t ∈ ( 0 , + ∞ ) . f ′ ( t ) = n t n − 1 , f ′ ′ ( t ) = n ( n − 1 ) t n − 2 , t ∈ ( 0 , + ∞ ) . When n > 1 when , f ′ ′ ( t ) > 0 , t ∈ ( 0 , + ∞ ) . therefore f ( t ) stay ( 0 , + ∞ ) The inner figure is concave , To any x > 0 , y > 0 , x ≠ y , There is always 1 2 [ f ( x ) + f ( y ) ] > f ( x + y 2 ) , namely 1 2 ( x n + y n ) > ( x + y 2 ) n ( x > 0 , y > 0 , x ≠ y , n > 1 ) . ( 2 ) take f ( t ) = e t , t ∈ ( − ∞ , + ∞ ) , f ′ ( t ) = e t , f ′ ′ ( t ) = e t > 0 , t ∈ ( − ∞ , + ∞ ) . therefore f ( t ) stay ( − ∞ , + ∞ ) The inner figure is concave , To any x , y ∈ ( − ∞ , + ∞ ) , x ≠ y , There is always 1 2 [ f ( x ) + f ( y ) ] > f ( x + y 2 ) , namely e x + e y 2 > e x + y 2 ( x ≠ y ) ( 3 ) take f ( t ) = t l n t , t ∈ ( 0 , + ∞ ) , f ′ ( t ) = l n t + 1 , f ′ ′ ( t ) = 1 t > 0 , t ∈ ( 0 , + ∞ ) , therefore f ( t ) stay ( 0 , + ∞ ) The inner figure is concave , To any x , y ∈ ( 0 , + ∞ ) , x ≠ y , There is always 1 2 [ f ( x ) + f ( y ) ] > f ( x + y 2 ) , namely 1 2 ( x l n x + y l n y ) > x + y 2 l n x + y 2 , x l n x + y l n y > ( x + y ) l n x + y 2 ( x > 0 , y > 0 , x ≠ y ) \begin{aligned} &\ \ (1)\ take f(t)=t^n,t \in (0, \ +\infty).f'(t)=nt^{n-1},f''(t)=n(n-1)t^{n-2},t \in (0, \ +\infty).\\\\ &\ \ \ \ \ \ \ \ When n \gt 1 when ,f''(t) \gt 0,t \in (0, \ +\infty). therefore f(t) stay (0, \ +\infty) The inner figure is concave , To any x \gt 0,y \gt 0,x \neq y, There is always \\\\ &\ \ \ \ \ \ \ \ \frac{1}{2}[f(x)+f(y)] \gt f\left(\frac{x+y}{2}\right), namely \frac{1}{2}(x^n+y^n) \gt \left(\frac{x+y}{2}\right)^n\ (x \gt 0,y \gt 0,x \neq y,n \gt 1).\\\\ &\ \ (2)\ take f(t)=e^t,t \in (-\infty, \ +\infty),f'(t)=e^t,f''(t)=e^t \gt 0,t \in (-\infty, \ +\infty).\\\\ &\ \ \ \ \ \ \ \ therefore f(t) stay (-\infty, \ +\infty) The inner figure is concave , To any x, y \in (-\infty, \ +\infty),x \neq y, There is always \\\\ &\ \ \ \ \ \ \ \ \frac{1}{2}[f(x)+f(y)] \gt f\left(\frac{x+y}{2}\right), namely \frac{e^x+e^y}{2} \gt e^{\frac{x+y}{2}}\ (x \neq y)\\\\ &\ \ (3)\ take f(t)=tln\ t,t \in (0, \ +\infty),f'(t)=ln\ t+1,f''(t)=\frac{1}{t} \gt 0,t \in (0, \ +\infty),\\\\ &\ \ \ \ \ \ \ \ therefore f(t) stay (0, \ +\infty) The inner figure is concave , To any x, y \in (0, \ +\infty),x \neq y, There is always \\\\ &\ \ \ \ \ \ \ \ \frac{1}{2}[f(x)+f(y)] \gt f\left(\frac{x+y}{2}\right), namely \frac{1}{2}(xln\ x+yln\ y) \gt \frac{x+y}{2}ln\frac{x+y}{2},\\\\ &\ \ \ \ \ \ \ \ \ xln\ x+yln\ y \gt (x+y)ln\ \frac{x+y}{2}\ (x \gt 0,y \gt 0,x \neq y) & \end{aligned} (1) take f(t)=tn,t∈(0, +∞).f′(t)=ntn−1,f′′(t)=n(n−1)tn−2,t∈(0, +∞). When n>1 when ,f′′(t)>0,t∈(0, +∞). therefore f(t) stay (0, +∞) The inner figure is concave , To any x>0,y>0,x=y, There is always 21[f(x)+f(y)]>f(2x+y), namely 21(xn+yn)>(2x+y)n (x>0,y>0,x=y,n>1). (2) take f(t)=et,t∈(−∞, +∞),f′(t)=et,f′′(t)=et>0,t∈(−∞, +∞). therefore f(t) stay (−∞, +∞) The inner figure is concave , To any x,y∈(−∞, +∞),x=y, There is always 21[f(x)+f(y)]>f(2x+y), namely 2ex+ey>e2x+y (x=y) (3) take f(t)=tln t,t∈(0, +∞),f′(t)=ln t+1,f′′(t)=t1>0,t∈(0, +∞), therefore f(t) stay (0, +∞) The inner figure is concave , To any x,y∈(0, +∞),x=y, There is always 21[f(x)+f(y)]>f(2x+y), namely 21(xln x+yln y)>2x+yln2x+y, xln x+yln y>(x+y)ln 2x+y (x>0,y>0,x=y)
12. Try to prove the curve y = x − 1 x 2 + 1 There are three inflection points on the same straight line . \begin{aligned}&12. \ Try to prove the curve y=\frac{x-1}{x^2+1} There are three inflection points on the same straight line .&\end{aligned} 12. Try to prove the curve y=x2+1x−1 There are three inflection points on the same straight line .
Explain :
y ′ = ( x 2 + 1 ) − 2 x ( x − 1 ) ( x 2 + 1 ) 2 = − x 2 + 2 x + 1 ( x 2 + 1 ) 2 , y ′ ′ = ( − 2 x + 2 ) ( x 2 + 1 ) 2 − 2 ( x 2 + 1 ) ⋅ 2 x ( − x 2 + 2 x + 1 ) ( x 2 + 1 ) 4 = 2 x 3 − 6 x 2 − 6 x + 2 ( x 2 + 1 ) 3 = 2 ( x + 1 ) [ x − ( 2 − 3 ) ] [ x − ( 2 + 3 ) ] ( x 2 + 1 ) 3 Make y ′ ′ = 0 , have to x 1 = − 1 , x 2 = 2 − 3 , x 3 = 2 + 3 , y 1 = − 1 , y 2 = 1 − 3 4 ( 2 − 3 ) , y 3 = 1 + 3 4 ( 2 + 3 ) When − ∞ < x < − 1 when , y ′ ′ < 0 , So the curve is ( − ∞ , − 1 ] It's convex , When − 1 < x < 2 − 3 when , y ′ ′ > 0 , So the curve is [ − 1 , 2 − 3 ] The top is concave , When 2 − 3 < x < 2 + 3 when , y ′ ′ < 0 , So the curve is [ 2 − 3 , 2 + 3 ] It's convex , When 2 + 3 < x < + ∞ when , y ′ ′ > 0 , So the curve is [ 2 + 3 , + ∞ ) The top is concave , So the curve has three inflection points , by ( − 1 , − 1 ) , ( 2 − 3 , 1 − 3 4 ( 2 − 3 ) ) , ( 2 + 3 , 1 + 3 4 ( 2 + 3 ) ) because 1 − 3 4 ( 2 − 3 ) − ( − 1 ) 2 − 3 − ( − 1 ) = 1 + 3 4 ( 2 + 3 ) − ( − 1 ) 2 + 3 − ( − 1 ) = 1 4 , So the three inflection points are in a straight line . \begin{aligned} &\ \ y'=\frac{(x^2+1)-2x(x-1)}{(x^2+1)^2}=\frac{-x^2+2x+1}{(x^2+1)^2},\\\\ &\ \ y''=\frac{(-2x+2)(x^2+1)^2-2(x^2+1)\cdot 2x(-x^2+2x+1)}{(x^2+1)^4}=\frac{2x^3-6x^2-6x+2}{(x^2+1)^3}=\frac{2(x+1)[x-(2-\sqrt{3})][x-(2+\sqrt{3})]}{(x^2+1)^3}\\\\ &\ \ Make y''=0, have to x_1=-1,x_2=2-\sqrt{3},x_3=2+\sqrt{3},y_1=-1,y_2=\frac{1-\sqrt{3}}{4(2-\sqrt{3})},y_3=\frac{1+\sqrt{3}}{4(2+\sqrt{3})}\\\\ &\ \ When -\infty \lt x \lt -1 when ,y'' \lt 0, So the curve is (-\infty, \ -1] It's convex ,\\\\ &\ \ When -1 \lt x \lt 2-\sqrt{3} when ,y'' \gt 0, So the curve is [-1, \ 2-\sqrt{3}] The top is concave ,\\\\ &\ \ When 2-\sqrt{3} \lt x \lt 2+\sqrt{3} when ,y'' \lt 0, So the curve is [2-\sqrt{3}, \ 2+\sqrt{3}] It's convex ,\\\\ &\ \ When 2+\sqrt{3} \lt x \lt +\infty when ,y'' \gt 0, So the curve is [2+\sqrt{3}, \ +\infty) The top is concave ,\\\\ &\ \ So the curve has three inflection points , by (-1, \ -1),\left(2-\sqrt{3}, \ \frac{1-\sqrt{3}}{4(2-\sqrt{3})}\right),\left(2+\sqrt{3}, \ \frac{1+\sqrt{3}}{4(2+\sqrt{3})}\right)\\\\ &\ \ because \frac{\frac{1-\sqrt{3}}{4(2-\sqrt{3})}-(-1)}{2-\sqrt{3}-(-1)}=\frac{\frac{1+\sqrt{3}}{4(2+\sqrt{3})}-(-1)}{2+\sqrt{3}-(-1)}=\frac{1}{4}, So the three inflection points are in a straight line . & \end{aligned} y′=(x2+1)2(x2+1)−2x(x−1)=(x2+1)2−x2+2x+1, y′′=(x2+1)4(−2x+2)(x2+1)2−2(x2+1)⋅2x(−x2+2x+1)=(x2+1)32x3−6x2−6x+2=(x2+1)32(x+1)[x−(2−3)][x−(2+3)] Make y′′=0, have to x1=−1,x2=2−3,x3=2+3,y1=−1,y2=4(2−3)1−3,y3=4(2+3)1+3 When −∞<x<−1 when ,y′′<0, So the curve is (−∞, −1] It's convex , When −1<x<2−3 when ,y′′>0, So the curve is [−1, 2−3] The top is concave , When 2−3<x<2+3 when ,y′′<0, So the curve is [2−3, 2+3] It's convex , When 2+3<x<+∞ when ,y′′>0, So the curve is [2+3, +∞) The top is concave , So the curve has three inflection points , by (−1, −1),(2−3, 4(2−3)1−3),(2+3, 4(2+3)1+3) because 2−3−(−1)4(2−3)1−3−(−1)=2+3−(−1)4(2+3)1+3−(−1)=41, So the three inflection points are in a straight line .
13. ask a 、 b Why is it worth it , spot ( 1 , 3 ) Is a curve y = a x 3 + b x 2 Inflection point . \begin{aligned}&13. \ ask a、b Why is it worth it , spot (1, \ 3) Is a curve y=ax^3+bx^2 Inflection point .&\end{aligned} 13. ask a、b Why is it worth it , spot (1, 3) Is a curve y=ax3+bx2 Inflection point .
Explain :
y ′ = 3 a x 2 + 2 b x , y ′ ′ = 6 a x + 2 b = 6 a ( x + b 3 a ) , Make y ′ ′ = 0 , have to x = − b 3 a , When − ∞ < x < − b 3 a when , y ′ ′ < 0 , So the curve is ( − ∞ , − b 3 a ] It's convex , When − b 3 a < x < + ∞ when , y ′ ′ > 0 , So the curve is [ − b 3 a , + ∞ ) The top is concave , When x = − b 3 a when , y = a ( − b 3 a ) 3 + b ( − b 3 a ) 2 = 2 b 3 27 a 2 . because y ′ ′ stay x Different numbers on both sides of , So point ( − b 3 a , 2 b 3 27 a 2 ) Is the inflection point of the curve . Make some ( 1 , 3 ) It's the inflection point , be − b 3 a = 1 , 2 b 3 27 a 2 = 3 , Solution a = − 3 2 , b = 9 2 . \begin{aligned} &\ \ y'=3ax^2+2bx,y''=6ax+2b=6a\left(x+\frac{b}{3a}\right), Make y''=0, have to x=-\frac{b}{3a},\\\\ &\ \ When -\infty \lt x \lt -\frac{b}{3a} when ,y'' \lt 0, So the curve is \left(-\infty, \ -\frac{b}{3a}\right] It's convex ,\\\\ &\ \ When -\frac{b}{3a} \lt x \lt +\infty when ,y'' \gt 0, So the curve is \left[-\frac{b}{3a}, \ +\infty\right) The top is concave ,\\\\ &\ \ When x=-\frac{b}{3a} when ,y=a\left(-\frac{b}{3a}\right)^3+b\left(-\frac{b}{3a}\right)^2=\frac{2b^3}{27a^2}. because y'' stay x Different numbers on both sides of , So point \left(-\frac{b}{3a}, \ \frac{2b^3}{27a^2}\right) Is the inflection point of the curve .\\\\ &\ \ Make some (1, \ 3) It's the inflection point , be -\frac{b}{3a}=1,\frac{2b^3}{27a^2}=3, Solution a=-\frac{3}{2},b=\frac{9}{2}. & \end{aligned} y′=3ax2+2bx,y′′=6ax+2b=6a(x+3ab), Make y′′=0, have to x=−3ab, When −∞<x<−3ab when ,y′′<0, So the curve is (−∞, −3ab] It's convex , When −3ab<x<+∞ when ,y′′>0, So the curve is [−3ab, +∞) The top is concave , When x=−3ab when ,y=a(−3ab)3+b(−3ab)2=27a22b3. because y′′ stay x Different numbers on both sides of , So point (−3ab, 27a22b3) Is the inflection point of the curve . Make some (1, 3) It's the inflection point , be −3ab=1,27a22b3=3, Solution a=−23,b=29.
14. Try to determine the curve y = a x 3 + b x 2 + c x + d Medium a 、 b 、 c 、 d , bring x = − 2 The curve at has a horizontal tangent , ( 1 , − 10 ) It's the inflection point , And the point ( − 2 , 44 ) On the curve . \begin{aligned}&14. \ Try to determine the curve y=ax^3+bx^2+cx+d Medium a、b、c、d, bring x=-2 The curve at has a horizontal tangent ,(1, \ -10) It's the inflection point ,\\\\&\ \ \ \ \ \ And the point (-2, \ 44) On the curve .&\end{aligned} 14. Try to determine the curve y=ax3+bx2+cx+d Medium a、b、c、d, bring x=−2 The curve at has a horizontal tangent ,(1, −10) It's the inflection point , And the point (−2, 44) On the curve .
Explain :
y ′ = 3 a x 2 + 2 b x + c , y ′ ′ = 6 a x + 2 b , According to the meaning , Yes y ( − 2 ) = 44 , y ′ ( − 2 ) = 0 , y ( 1 ) = 10 , y ′ ′ ( 1 ) = 0 , namely { − 8 a + 4 b − 2 c + d = 44 , 12 a − 4 b + c = 0 , a + b + c + d = − 10 , 6 a + 2 b = 0. To solve the equation a = 1 , b = − 3 , c = − 24 , d = 16. \begin{aligned} &\ \ y'=3ax^2+2bx+c,y''=6ax+2b, According to the meaning , Yes y(-2)=44,y'(-2)=0,y(1)=10,y''(1)=0,\\\\ &\ \ namely \begin{cases}-8a+4b-2c+d=44,\\\\12a-4b+c=0,\\\\a+b+c+d=-10,\\\\6a+2b=0.\end{cases}\\\\ &\ \ To solve the equation a=1,b=-3,c=-24,d=16. & \end{aligned} y′=3ax2+2bx+c,y′′=6ax+2b, According to the meaning , Yes y(−2)=44,y′(−2)=0,y(1)=10,y′′(1)=0, namely ⎩⎨⎧−8a+4b−2c+d=44,12a−4b+c=0,a+b+c+d=−10,6a+2b=0. To solve the equation a=1,b=−3,c=−24,d=16.
15. Try to decide y = k ( x 2 − 3 ) 2 in k Value , Make the normal at the inflection point of the curve pass through the origin . \begin{aligned}&15. \ Try to decide y=k(x^2-3)^2 in k Value , Make the normal at the inflection point of the curve pass through the origin .&\end{aligned} 15. Try to decide y=k(x2−3)2 in k Value , Make the normal at the inflection point of the curve pass through the origin .
Explain :
y ′ = 2 k ( x 2 − 3 ) ⋅ 2 x = 4 k x ( x 2 − 3 ) , y ′ ′ = 4 k ( x 2 − 3 ) + 4 k x ⋅ 2 x = 12 k x ( x − 1 ) ( x + 1 ) . Make y ′ ′ = 0 , have to x 1 = − 1 , x 2 = 1 , y 1 = 4 k , y 2 = 4 k . When − ∞ < x < − 1 when , y ′ ′ > 0 , So the curve is ( − ∞ , − 1 ] The top is concave , When − 1 < x < 1 when , y ′ ′ < 0 , So the curve is [ − 1 , 1 ] It's convex , When 1 < x < + ∞ when , y ′ ′ > 0 , So the curve is [ 1 , + ∞ ) Concave up , So point ( − 1 , 4 k ) and ( 1 , 4 k ) Is the inflection point of the curve . When x = − 1 when , y ′ = 8 k , So a little ( − 1 , 4 k ) The normal equation of is Y − 4 k = − 1 8 k ( X + 1 ) . To make the normal cross the origin , The point of ( 0 , 0 ) Satisfy the normal equation , have to k = ± 2 8 When x = 1 when , y ′ = − 8 k , So a little ( 1 , 4 k ) The normal equation of is Y − 4 k = 1 8 k ( X − 1 ) . To make the normal cross the origin , The point of ( 0 , 0 ) Satisfy the normal equation , have to k = ± 2 8 , So when k = ± 2 8 when , The normal at the inflection point of the curve passes through the origin . \begin{aligned} &\ \ y'=2k(x^2-3)\cdot 2x=4kx(x^2-3),y''=4k(x^2-3)+4kx \cdot 2x=12kx(x-1)(x+1).\\\\ &\ \ Make y''=0, have to x_1=-1,x_2=1,y_1=4k,y_2=4k.\\\\ &\ \ When -\infty \lt x \lt -1 when ,y'' \gt 0, So the curve is (-\infty, \ -1] The top is concave ,\\\\ &\ \ When -1 \lt x \lt 1 when ,y'' \lt 0, So the curve is [-1,\ 1] It's convex ,\\\\ &\ \ When 1 \lt x \lt +\infty when ,y'' \gt 0, So the curve is [1, \ +\infty) Concave up , So point (-1, \ 4k) and (1, \ 4k) Is the inflection point of the curve .\\\\ &\ \ When x=-1 when ,y'=8k, So a little (-1, \ 4k) The normal equation of is Y-4k=-\frac{1}{8k}(X+1).\\\\ &\ \ To make the normal cross the origin , The point of (0, \ 0) Satisfy the normal equation , have to k=\pm \frac{\sqrt{2}}{8}\\\\ &\ \ When x=1 when ,y'=-8k, So a little (1, \ 4k) The normal equation of is Y-4k=\frac{1}{8k}(X-1).\\\\ &\ \ To make the normal cross the origin , The point of (0, \ 0) Satisfy the normal equation , have to k=\pm \frac{\sqrt{2}}{8}, So when k=\pm \frac{\sqrt{2}}{8} when , The normal at the inflection point of the curve passes through the origin . & \end{aligned} y′=2k(x2−3)⋅2x=4kx(x2−3),y′′=4k(x2−3)+4kx⋅2x=12kx(x−1)(x+1). Make y′′=0, have to x1=−1,x2=1,y1=4k,y2=4k. When −∞<x<−1 when ,y′′>0, So the curve is (−∞, −1] The top is concave , When −1<x<1 when ,y′′<0, So the curve is [−1, 1] It's convex , When 1<x<+∞ when ,y′′>0, So the curve is [1, +∞) Concave up , So point (−1, 4k) and (1, 4k) Is the inflection point of the curve . When x=−1 when ,y′=8k, So a little (−1, 4k) The normal equation of is Y−4k=−8k1(X+1). To make the normal cross the origin , The point of (0, 0) Satisfy the normal equation , have to k=±82 When x=1 when ,y′=−8k, So a little (1, 4k) The normal equation of is Y−4k=8k1(X−1). To make the normal cross the origin , The point of (0, 0) Satisfy the normal equation , have to k=±82, So when k=±82 when , The normal at the inflection point of the curve passes through the origin .
16. set up y = f ( x ) stay x = x 0 Has a third-order continuous derivative in a neighborhood of , If f ′ ′ ( x 0 ) = 0 , and f ′ ′ ′ ( x 0 ) ≠ 0 , Try to ask ( x 0 , f ( x 0 ) ) Is it the inflection point ? Why? ? \begin{aligned}&16. \ set up y=f(x) stay x=x_0 Has a third-order continuous derivative in a neighborhood of , If f''(x_0)=0, and f'''(x_0) \neq 0,\\\\&\ \ \ \ \ \ Try to ask (x_0, \ f(x_0)) Is it the inflection point ? Why? ?&\end{aligned} 16. set up y=f(x) stay x=x0 Has a third-order continuous derivative in a neighborhood of , If f′′(x0)=0, and f′′′(x0)=0, Try to ask (x0, f(x0)) Is it the inflection point ? Why? ?
Explain :
It is known that f ′ ′ ′ ( x 0 ) ≠ 0 , hypothesis f ′ ′ ′ ( x 0 ) > 0 , because f ′ ′ ′ ( x 0 ) stay x = x 0 Continuous in a neighborhood of , So there must be δ > 0 , When x ∈ ( x 0 − δ , x 0 + δ ) when , f ′ ′ ′ ( x 0 ) > 0 , So in ( x 0 − δ , x 0 + δ ) Inside f ′ ′ ( x ) Monotonous increase , Again because f ′ ′ ( x 0 ) = 0 , So when x ∈ ( x 0 − δ , x 0 ) when , f ′ ′ ( x ) < f ′ ′ ( x 0 ) = 0 , be f ( x ) stay ( x 0 − δ , x 0 ) The figure inside is convex , When x ∈ ( x 0 , x 0 + δ ) when , f ′ ′ ( x ) > f ′ ′ ( x 0 ) = 0 , be f ( x ) stay ( x 0 , x 0 + δ ) The figure inside is concave , So point ( x 0 , f ( x 0 ) ) Is the inflection point of the curve . \begin{aligned} &\ \ It is known that f'''(x_0) \neq 0, hypothesis f'''(x_0) \gt 0, because f'''(x_0) stay x=x_0 Continuous in a neighborhood of , So there must be \delta \gt 0,\\\\ &\ \ When x \in (x_0-\delta, \ x_0+\delta) when ,f'''(x_0) \gt 0, So in (x_0-\delta, \ x_0+\delta) Inside f''(x) Monotonous increase ,\\\\ &\ \ Again because f''(x_0)=0, So when x \in (x_0-\delta, \ x_0) when ,f''(x) \lt f''(x_0)=0, be f(x) stay (x_0-\delta, \ x_0) The figure inside is convex ,\\\\ &\ \ When x \in (x_0, \ x_0+\delta) when ,f''(x) \gt f''(x_0)=0, be f(x) stay (x_0, \ x_0+\delta) The figure inside is concave , So point (x_0, \ f(x_0)) Is the inflection point of the curve . & \end{aligned} It is known that f′′′(x0)=0, hypothesis f′′′(x0)>0, because f′′′(x0) stay x=x0 Continuous in a neighborhood of , So there must be δ>0, When x∈(x0−δ, x0+δ) when ,f′′′(x0)>0, So in (x0−δ, x0+δ) Inside f′′(x) Monotonous increase , Again because f′′(x0)=0, So when x∈(x0−δ, x0) when ,f′′(x)<f′′(x0)=0, be f(x) stay (x0−δ, x0) The figure inside is convex , When x∈(x0, x0+δ) when ,f′′(x)>f′′(x0)=0, be f(x) stay (x0, x0+δ) The figure inside is concave , So point (x0, f(x0)) Is the inflection point of the curve .
边栏推荐
- LeetCode_409_最长回文串
- Use of custom annotations
- 动态规划——63. 不同路径 II
- 【力扣】1337.矩阵中战斗力最弱的k行
- An article grasps the calculation and processing of date data in PostgreSQL
- 2022-07-27:小红拿到了一个长度为N的数组arr,她准备只进行一次修改, 可以将数组中任意一个数arr[i],修改为不大于P的正数(修改后的数必须和原数不同), 并使得所有数之和为X的倍数。
- [openvx] VX for basic use of objects_ lut
- Data mining-01
- CH340 RTS DTR引脚编程驱动OLED
- Protocols in swift
猜你喜欢

单调栈——739. 每日温度

The latest version of pagoda installs the zip extension, and PHP -m does not display the processing method

TypeError: ufunc ‘bitwise_ and‘ not supported for the input types, and the inputs could not be safely

leetcode刷题:动态规划09(最后一块石头的重量 II)

MSGAN用于多种图像合成的模式搜索生成对抗网络---解决模式崩塌问题

Collection | 0 basic open source data visualization platform flyfish large screen development guide

Asemi rectifier bridge gbpc5010, gbpc5010 parameters, gbpc5010 size

构建“产业大脑”,以“数字化”提升园区运营管理及服务能力!

Redis basic operation

Server memory failure prediction can actually do this!
随机推荐
动态规划——1049. 最后一块石头的重量 II
Data mining-02
Screenshot of deepstream detection results
【P4】 查看库文件两个历史版本的区别
LightPicture – 精致图床系统
Digital economy has become the biggest attraction
Input upload file and echo FileReader and restrict the type of file selection
95后阿里P7晒出工资单:真的是狠狠扎心了...
ES6 从入门到精通 # 07:解构赋值
SAP UI5 FileUploader 控件深入介绍 - 为什么需要一个隐藏的 iframe 试读版
Billions of asset addresses are blacklisted? How to use the tether address freezing function?
Swift中的协议
12月份PMP考试首次采用新考纲,该怎么学?
Redis source code analysis (who says C language can't analyze it?)
Outlook 教程,如何在 Outlook 中使用颜色类别和提醒?
Qt:qmessagebox message box, custom signal and slot
玩一玩WolframAlpha计算知识引擎
[wrong question]
What is tor? What is the use of tor browser update?
基于SSM实现在线租房系统