当前位置:网站首页>Advanced Mathematics (Seventh Edition) Tongji University exercises 3-4 personal solutions (the last 8 questions)
Advanced Mathematics (Seventh Edition) Tongji University exercises 3-4 personal solutions (the last 8 questions)
2022-07-28 03:43:00 【Navigator_ Z】
Advanced mathematics ( The seventh edition ) Tongji University exercises 3-4( after 8 topic )
9. Determine the concavity and convexity of the following curves : \begin{aligned}&9. \ Determine the concavity and convexity of the following curves :&\end{aligned} 9. Determine the concavity and convexity of the following curves :
( 1 ) y = 4 x − x 2 ; ( 2 ) y = s h x ; ( 3 ) y = x + 1 x ( x > 0 ) ; ( 4 ) y = x a r c t a n x . \begin{aligned} &\ \ (1)\ \ y=4x-x^2;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ y=sh\ x;\\\\ &\ \ (3)\ \ y=x+\frac{1}{x}\ (x \gt 0);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ y=xarctan\ x. & \end{aligned} (1) y=4x−x2; (2) y=sh x; (3) y=x+x1 (x>0); (4) y=xarctan x.
Explain :
( 1 ) y ′ = 4 − 2 x , y ′ ′ = − 2 < 0 , So the curve y = 4 x − x 2 stay ( − ∞ , + ∞ ) The inside is convex . ( 2 ) y ′ = c h x , y ′ ′ = s h x , Make y ′ ′ = 0 , have to x = 0 . When − ∞ < x < 0 when , y ′ ′ < 0 , curve y = s h x stay ( − ∞ , 0 ] It's convex . When 0 < x < + ∞ when , y ′ ′ > 0 , curve y = s h x stay [ 0 , + ∞ ) The top is concave . ( 3 ) y ′ = 1 − 1 x 2 , y ′ ′ = 2 x 3 > 0 ( x > 0 ), So the curve y = x + 1 x stay ( 0 , + ∞ ) The inside is concave . ( 4 ) y ′ = a r c t a n x + x 1 + x 2 , y ′ ′ = 1 1 + x 2 + 1 + x 2 − x ⋅ 2 x ( 1 + x 2 ) 2 = 2 ( 1 + x 2 ) 2 > 0 , So the curve y = x a r c t a n x stay ( − ∞ , + ∞ ) The inside is concave . \begin{aligned} &\ \ (1)\ y'=4-2x,y''=-2 \lt 0, So the curve y=4x-x^2 stay (-\infty, \ +\infty) The inside is convex .\\\\ &\ \ (2)\ y'=ch\ x,y''=sh\ x, Make y''=0, have to x=0.\\\\ &\ \ \ \ \ \ \ \ When -\infty \lt x \lt 0 when ,y'' \lt 0, curve y=sh\ x stay (-\infty, \ 0] It's convex .\\\\ &\ \ \ \ \ \ \ \ When 0 \lt x \lt +\infty when ,y'' \gt 0, curve y=sh\ x stay [0, \ +\infty) The top is concave .\\\\ &\ \ (3)\ y'=1-\frac{1}{x^2},y''=\frac{2}{x^3} \gt 0(x \gt 0), So the curve y=x+\frac{1}{x} stay (0, \ +\infty) The inside is concave .\\\\ &\ \ (4)\ y'=arctan\ x+\frac{x}{1+x^2},y''=\frac{1}{1+x^2}+\frac{1+x^2-x\cdot 2x}{(1+x^2)^2}=\frac{2}{(1+x^2)^2} \gt 0,\\\\ &\ \ \ \ \ \ \ \ So the curve y=xarctan\ x stay (-\infty, \ +\infty) The inside is concave . & \end{aligned} (1) y′=4−2x,y′′=−2<0, So the curve y=4x−x2 stay (−∞, +∞) The inside is convex . (2) y′=ch x,y′′=sh x, Make y′′=0, have to x=0. When −∞<x<0 when ,y′′<0, curve y=sh x stay (−∞, 0] It's convex . When 0<x<+∞ when ,y′′>0, curve y=sh x stay [0, +∞) The top is concave . (3) y′=1−x21,y′′=x32>0(x>0), So the curve y=x+x1 stay (0, +∞) The inside is concave . (4) y′=arctan x+1+x2x,y′′=1+x21+(1+x2)21+x2−x⋅2x=(1+x2)22>0, So the curve y=xarctan x stay (−∞, +∞) The inside is concave .
10. Find the inflection point and concave or convex interval of the following function graph : \begin{aligned}&10. \ Find the inflection point and concave or convex interval of the following function graph :&\end{aligned} 10. Find the inflection point and concave or convex interval of the following function graph :
( 1 ) y = x 3 − 5 x 2 + 3 x + 5 ; ( 2 ) y = x e − x ; ( 3 ) y = ( x + 1 ) 4 + e x ; ( 4 ) y = l n ( x 2 + 1 ) ; ( 5 ) y = e a r c t a n x ; ( 6 ) y = x 4 ( 12 l n x − 7 ) . \begin{aligned} &\ \ (1)\ \ y=x^3-5x^2+3x+5;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ y=xe^{-x};\\\\ &\ \ (3)\ \ y=(x+1)^4+e^x;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ y=ln(x^2+1);\\\\ &\ \ (5)\ \ y=e^{arctan\ x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ y=x^4(12ln\ x-7). & \end{aligned} (1) y=x3−5x2+3x+5; (2) y=xe−x; (3) y=(x+1)4+ex; (4) y=ln(x2+1); (5) y=earctan x; (6) y=x4(12ln x−7).
Explain :
( 1 ) y ′ = 3 x 2 − 10 x + 3 , y ′ ′ = 6 x − 10 , Make y ′ ′ = 0 , have to x = 5 3 , y = 20 27 . When − ∞ < x < 5 3 when , y ′ ′ < 0 , So the curve is ( − ∞ , 5 3 ] It's convex , When 5 3 < x < + ∞ when , y ′ ′ > 0 , So the curve is [ 5 3 , + ∞ ) The top is concave , therefore , spot ( 5 3 , 20 27 ) It's the inflection point . ( 2 ) y ′ = e − x − x e − x = ( 1 − x ) e − x , y ′ ′ = − e − x + ( 1 − x ) ( − e − x ) = e − x ( x − 2 ) . Make y ′ ′ = 0 , have to x = 2 , y = 2 e 2 . When − ∞ < x < 2 when , y ′ ′ < 0 , So the curve is ( − ∞ , 2 ] It's convex , When 2 < x < + ∞ when , y ′ ′ > 0 , So the curve is ( 2 , + ∞ ) The top is concave , therefore , spot ( 2 , 2 e 2 ) It's the inflection point . ( 3 ) y ′ = 4 ( x + 1 ) 3 + e x , y ′ ′ = 12 ( x + 1 ) 2 + e x > 0 , So the curve is ( − ∞ , + ∞ ) The inside is concave , The curve has no inflection point . ( 4 ) y ′ = 2 x x 2 + 1 , y ′ ′ = 2 ( x 2 + 1 ) − 2 x ⋅ 2 x ( x 2 + 1 ) 2 = − 2 ( x − 1 ) ( x + 1 ) ( x 2 + 1 ) 2 . Make y ′ ′ = 0 , have to x 1 = − 1 , x 2 = 1. When − ∞ < x < − 1 when , y ′ ′ < 0 , So the curve is ( − ∞ , − 1 ] It's convex , When − 1 < x < 1 when , y ′ ′ > 0 , So the curve is [ − 1 , 1 ] The top is concave , When 1 < x + ∞ when , y ′ ′ < 0 , So the curve is [ 1 , + ∞ ) It's convex . The curve has two inflection points , The difference is ( − 1 , l n 2 ) Sum point ( 1 , l n 2 ) . ( 5 ) y ′ = e a r c t a n x 1 + x 2 , y ′ ′ = − 2 e a r c t a n x ( x − 1 2 ) ( 1 + x 2 ) 2 , Make y ′ ′ = 0 , have to x = 1 2 , y = e a r c t a n 1 2 , When − ∞ < x < 1 2 when , y ′ ′ > 0 , So the curve is ( − ∞ , 1 2 ] The top is concave , When 1 2 < x < + ∞ when , y ′ ′ < 0 , So the curve is [ 1 2 , + ∞ ) Convex . So point ( 1 2 , e a r c t a n 1 2 ) It's the inflection point . ( 6 ) y ′ = 4 x 3 ( 12 l n x − 7 ) + x 4 ⋅ 12 1 x = 4 x 3 ( 12 l n x − 4 ) , y ′ ′ = 12 x 2 ( 12 l n x − 4 ) + 4 x 3 ⋅ 12 1 x = 144 x 2 l n x ( x > 0 ) . Make y ′ ′ = 0 , have to x = 1 , y = − 7 . When 0 < x < 1 when , y ′ ′ < 0 , So the curve is ( 0 , 1 ] It's convex , When 1 < x < + ∞ when , y ′ ′ > 0 , So the curve is [ 1 , + ∞ ) The top is concave , So point ( 1 , − 7 ) It's the inflection point . \begin{aligned} &\ \ (1)\ y'=3x^2-10x+3,y''=6x-10, Make y''=0, have to x=\frac{5}{3},y=\frac{20}{27}.\\\\ &\ \ \ \ \ \ \ \ When -\infty \lt x \lt \frac{5}{3} when ,y'' \lt 0, So the curve is \left(-\infty, \ \frac{5}{3}\right] It's convex ,\\\\ &\ \ \ \ \ \ \ \ When \frac{5}{3} \lt x \lt +\infty when ,y'' \gt 0, So the curve is \left[\frac{5}{3}, \ +\infty\right) The top is concave , therefore , spot \left(\frac{5}{3}, \ \frac{20}{27}\right) It's the inflection point .\\\\ &\ \ (2)\ y'=e^{-x}-xe^{-x}=(1-x)e^{-x},y''=-e^{-x}+(1-x)(-e^{-x})=e^{-x}(x-2).\\\\ &\ \ \ \ \ \ \ \ Make y''=0, have to x=2,y=\frac{2}{e^2}.\\\\ &\ \ \ \ \ \ \ \ When -\infty \lt x \lt 2 when ,y'' \lt 0, So the curve is (-\infty, \ 2] It's convex ,\\\\ &\ \ \ \ \ \ \ \ When 2 \lt x \lt +\infty when ,y'' \gt 0, So the curve is (2, \ +\infty) The top is concave , therefore , spot \left(2, \ \frac{2}{e^2}\right) It's the inflection point .\\\\ &\ \ (3)\ y'=4(x+1)^3+e^x,y''=12(x+1)^2+e^x \gt 0, So the curve is (-\infty, \ +\infty) The inside is concave , The curve has no inflection point .\\\\ &\ \ (4)\ y'=\frac{2x}{x^2+1},y''=\frac{2(x^2+1)-2x \cdot 2x}{(x^2+1)^2}=\frac{-2(x-1)(x+1)}{(x^2+1)^2}. Make y''=0, have to x_1=-1,x_2=1.\\\\ &\ \ \ \ \ \ \ \ When -\infty \lt x \lt -1 when ,y'' \lt 0, So the curve is (-\infty, \ -1] It's convex ,\\\\ &\ \ \ \ \ \ \ \ When -1 \lt x \lt 1 when ,y'' \gt 0, So the curve is [-1, \ 1] The top is concave ,\\\\ &\ \ \ \ \ \ \ \ When 1 \lt x \ +\infty when ,y'' \lt 0, So the curve is [1, \ +\infty) It's convex . The curve has two inflection points , The difference is (-1, \ ln\ 2) Sum point (1, \ ln\ 2).\\\\ &\ \ (5)\ y'=\frac{e^{arctan\ x}}{1+x^2},y''=\frac{-2e^{arctan\ x}\left(x-\frac{1}{2}\right)}{(1+x^2)^2}, Make y''=0, have to x=\frac{1}{2},y=e^{arctan\ \frac{1}{2}},\\\\ &\ \ \ \ \ \ \ \ When -\infty \lt x \lt \frac{1}{2} when ,y'' \gt 0, So the curve is \left(-\infty, \ \frac{1}{2}\right] The top is concave ,\\\\ &\ \ \ \ \ \ \ \ When \frac{1}{2} \lt x \lt +\infty when ,y'' \lt 0, So the curve is \left[\frac{1}{2}, \ +\infty\right) Convex . So point \left(\frac{1}{2}, \ e^{arctan\ \frac{1}{2}}\right) It's the inflection point .\\\\ &\ \ (6)\ y'=4x^3(12ln\ x-7)+x^4 \cdot 12\frac{1}{x}=4x^3(12ln\ x-4),y''=12x^2(12ln\ x-4)+4x^3\cdot 12\frac{1}{x}=144x^2ln\ x\ (x \gt 0).\\\\ &\ \ \ \ \ \ \ \ Make y''=0, have to x=1,y=-7. When 0 \lt x \lt 1 when ,y'' \lt 0, So the curve is (0, \ 1] It's convex ,\\\\ &\ \ \ \ \ \ \ \ When 1 \lt x \lt +\infty when ,y'' \gt 0, So the curve is [1, \ +\infty) The top is concave , So point (1, \ -7) It's the inflection point . & \end{aligned} (1) y′=3x2−10x+3,y′′=6x−10, Make y′′=0, have to x=35,y=2720. When −∞<x<35 when ,y′′<0, So the curve is (−∞, 35] It's convex , When 35<x<+∞ when ,y′′>0, So the curve is [35, +∞) The top is concave , therefore , spot (35, 2720) It's the inflection point . (2) y′=e−x−xe−x=(1−x)e−x,y′′=−e−x+(1−x)(−e−x)=e−x(x−2). Make y′′=0, have to x=2,y=e22. When −∞<x<2 when ,y′′<0, So the curve is (−∞, 2] It's convex , When 2<x<+∞ when ,y′′>0, So the curve is (2, +∞) The top is concave , therefore , spot (2, e22) It's the inflection point . (3) y′=4(x+1)3+ex,y′′=12(x+1)2+ex>0, So the curve is (−∞, +∞) The inside is concave , The curve has no inflection point . (4) y′=x2+12x,y′′=(x2+1)22(x2+1)−2x⋅2x=(x2+1)2−2(x−1)(x+1). Make y′′=0, have to x1=−1,x2=1. When −∞<x<−1 when ,y′′<0, So the curve is (−∞, −1] It's convex , When −1<x<1 when ,y′′>0, So the curve is [−1, 1] The top is concave , When 1<x +∞ when ,y′′<0, So the curve is [1, +∞) It's convex . The curve has two inflection points , The difference is (−1, ln 2) Sum point (1, ln 2). (5) y′=1+x2earctan x,y′′=(1+x2)2−2earctan x(x−21), Make y′′=0, have to x=21,y=earctan 21, When −∞<x<21 when ,y′′>0, So the curve is (−∞, 21] The top is concave , When 21<x<+∞ when ,y′′<0, So the curve is [21, +∞) Convex . So point (21, earctan 21) It's the inflection point . (6) y′=4x3(12ln x−7)+x4⋅12x1=4x3(12ln x−4),y′′=12x2(12ln x−4)+4x3⋅12x1=144x2ln x (x>0). Make y′′=0, have to x=1,y=−7. When 0<x<1 when ,y′′<0, So the curve is (0, 1] It's convex , When 1<x<+∞ when ,y′′>0, So the curve is [1, +∞) The top is concave , So point (1, −7) It's the inflection point .
11. Using the concavity and convexity of function graph , Prove the following inequality : \begin{aligned}&11. \ Using the concavity and convexity of function graph , Prove the following inequality :&\end{aligned} 11. Using the concavity and convexity of function graph , Prove the following inequality :
( 1 ) 1 2 ( x n + y n ) > ( x + y 2 ) n ( x > 0 , y > 0 , x ≠ y , n > 1 ) ; ( 2 ) e x + e y 2 > e x + y 2 ( x ≠ y ) ; ( 3 ) x l n x + y l n y > ( x + y ) l n x + y 2 ( x > 0 , y > 0 , x ≠ y ) . \begin{aligned} &\ \ (1)\ \ \frac{1}{2}(x^n+y^n) \gt \left(\frac{x+y}{2}\right)^n\ (x \gt 0,y \gt 0,x \neq y,n \gt 1);\\\\ &\ \ (2)\ \ \frac{e^x+e^y}{2} \gt e^{\frac{x+y}{2}}\ (x \neq y);\\\\ &\ \ (3)\ \ xln\ x+yln\ y \gt (x+y)ln\ \frac{x+y}{2}\ (x \gt 0,y \gt 0,x \neq y). & \end{aligned} (1) 21(xn+yn)>(2x+y)n (x>0,y>0,x=y,n>1); (2) 2ex+ey>e2x+y (x=y); (3) xln x+yln y>(x+y)ln 2x+y (x>0,y>0,x=y).
Explain :
( 1 ) take f ( t ) = t n , t ∈ ( 0 , + ∞ ) . f ′ ( t ) = n t n − 1 , f ′ ′ ( t ) = n ( n − 1 ) t n − 2 , t ∈ ( 0 , + ∞ ) . When n > 1 when , f ′ ′ ( t ) > 0 , t ∈ ( 0 , + ∞ ) . therefore f ( t ) stay ( 0 , + ∞ ) The inner figure is concave , To any x > 0 , y > 0 , x ≠ y , There is always 1 2 [ f ( x ) + f ( y ) ] > f ( x + y 2 ) , namely 1 2 ( x n + y n ) > ( x + y 2 ) n ( x > 0 , y > 0 , x ≠ y , n > 1 ) . ( 2 ) take f ( t ) = e t , t ∈ ( − ∞ , + ∞ ) , f ′ ( t ) = e t , f ′ ′ ( t ) = e t > 0 , t ∈ ( − ∞ , + ∞ ) . therefore f ( t ) stay ( − ∞ , + ∞ ) The inner figure is concave , To any x , y ∈ ( − ∞ , + ∞ ) , x ≠ y , There is always 1 2 [ f ( x ) + f ( y ) ] > f ( x + y 2 ) , namely e x + e y 2 > e x + y 2 ( x ≠ y ) ( 3 ) take f ( t ) = t l n t , t ∈ ( 0 , + ∞ ) , f ′ ( t ) = l n t + 1 , f ′ ′ ( t ) = 1 t > 0 , t ∈ ( 0 , + ∞ ) , therefore f ( t ) stay ( 0 , + ∞ ) The inner figure is concave , To any x , y ∈ ( 0 , + ∞ ) , x ≠ y , There is always 1 2 [ f ( x ) + f ( y ) ] > f ( x + y 2 ) , namely 1 2 ( x l n x + y l n y ) > x + y 2 l n x + y 2 , x l n x + y l n y > ( x + y ) l n x + y 2 ( x > 0 , y > 0 , x ≠ y ) \begin{aligned} &\ \ (1)\ take f(t)=t^n,t \in (0, \ +\infty).f'(t)=nt^{n-1},f''(t)=n(n-1)t^{n-2},t \in (0, \ +\infty).\\\\ &\ \ \ \ \ \ \ \ When n \gt 1 when ,f''(t) \gt 0,t \in (0, \ +\infty). therefore f(t) stay (0, \ +\infty) The inner figure is concave , To any x \gt 0,y \gt 0,x \neq y, There is always \\\\ &\ \ \ \ \ \ \ \ \frac{1}{2}[f(x)+f(y)] \gt f\left(\frac{x+y}{2}\right), namely \frac{1}{2}(x^n+y^n) \gt \left(\frac{x+y}{2}\right)^n\ (x \gt 0,y \gt 0,x \neq y,n \gt 1).\\\\ &\ \ (2)\ take f(t)=e^t,t \in (-\infty, \ +\infty),f'(t)=e^t,f''(t)=e^t \gt 0,t \in (-\infty, \ +\infty).\\\\ &\ \ \ \ \ \ \ \ therefore f(t) stay (-\infty, \ +\infty) The inner figure is concave , To any x, y \in (-\infty, \ +\infty),x \neq y, There is always \\\\ &\ \ \ \ \ \ \ \ \frac{1}{2}[f(x)+f(y)] \gt f\left(\frac{x+y}{2}\right), namely \frac{e^x+e^y}{2} \gt e^{\frac{x+y}{2}}\ (x \neq y)\\\\ &\ \ (3)\ take f(t)=tln\ t,t \in (0, \ +\infty),f'(t)=ln\ t+1,f''(t)=\frac{1}{t} \gt 0,t \in (0, \ +\infty),\\\\ &\ \ \ \ \ \ \ \ therefore f(t) stay (0, \ +\infty) The inner figure is concave , To any x, y \in (0, \ +\infty),x \neq y, There is always \\\\ &\ \ \ \ \ \ \ \ \frac{1}{2}[f(x)+f(y)] \gt f\left(\frac{x+y}{2}\right), namely \frac{1}{2}(xln\ x+yln\ y) \gt \frac{x+y}{2}ln\frac{x+y}{2},\\\\ &\ \ \ \ \ \ \ \ \ xln\ x+yln\ y \gt (x+y)ln\ \frac{x+y}{2}\ (x \gt 0,y \gt 0,x \neq y) & \end{aligned} (1) take f(t)=tn,t∈(0, +∞).f′(t)=ntn−1,f′′(t)=n(n−1)tn−2,t∈(0, +∞). When n>1 when ,f′′(t)>0,t∈(0, +∞). therefore f(t) stay (0, +∞) The inner figure is concave , To any x>0,y>0,x=y, There is always 21[f(x)+f(y)]>f(2x+y), namely 21(xn+yn)>(2x+y)n (x>0,y>0,x=y,n>1). (2) take f(t)=et,t∈(−∞, +∞),f′(t)=et,f′′(t)=et>0,t∈(−∞, +∞). therefore f(t) stay (−∞, +∞) The inner figure is concave , To any x,y∈(−∞, +∞),x=y, There is always 21[f(x)+f(y)]>f(2x+y), namely 2ex+ey>e2x+y (x=y) (3) take f(t)=tln t,t∈(0, +∞),f′(t)=ln t+1,f′′(t)=t1>0,t∈(0, +∞), therefore f(t) stay (0, +∞) The inner figure is concave , To any x,y∈(0, +∞),x=y, There is always 21[f(x)+f(y)]>f(2x+y), namely 21(xln x+yln y)>2x+yln2x+y, xln x+yln y>(x+y)ln 2x+y (x>0,y>0,x=y)
12. Try to prove the curve y = x − 1 x 2 + 1 There are three inflection points on the same straight line . \begin{aligned}&12. \ Try to prove the curve y=\frac{x-1}{x^2+1} There are three inflection points on the same straight line .&\end{aligned} 12. Try to prove the curve y=x2+1x−1 There are three inflection points on the same straight line .
Explain :
y ′ = ( x 2 + 1 ) − 2 x ( x − 1 ) ( x 2 + 1 ) 2 = − x 2 + 2 x + 1 ( x 2 + 1 ) 2 , y ′ ′ = ( − 2 x + 2 ) ( x 2 + 1 ) 2 − 2 ( x 2 + 1 ) ⋅ 2 x ( − x 2 + 2 x + 1 ) ( x 2 + 1 ) 4 = 2 x 3 − 6 x 2 − 6 x + 2 ( x 2 + 1 ) 3 = 2 ( x + 1 ) [ x − ( 2 − 3 ) ] [ x − ( 2 + 3 ) ] ( x 2 + 1 ) 3 Make y ′ ′ = 0 , have to x 1 = − 1 , x 2 = 2 − 3 , x 3 = 2 + 3 , y 1 = − 1 , y 2 = 1 − 3 4 ( 2 − 3 ) , y 3 = 1 + 3 4 ( 2 + 3 ) When − ∞ < x < − 1 when , y ′ ′ < 0 , So the curve is ( − ∞ , − 1 ] It's convex , When − 1 < x < 2 − 3 when , y ′ ′ > 0 , So the curve is [ − 1 , 2 − 3 ] The top is concave , When 2 − 3 < x < 2 + 3 when , y ′ ′ < 0 , So the curve is [ 2 − 3 , 2 + 3 ] It's convex , When 2 + 3 < x < + ∞ when , y ′ ′ > 0 , So the curve is [ 2 + 3 , + ∞ ) The top is concave , So the curve has three inflection points , by ( − 1 , − 1 ) , ( 2 − 3 , 1 − 3 4 ( 2 − 3 ) ) , ( 2 + 3 , 1 + 3 4 ( 2 + 3 ) ) because 1 − 3 4 ( 2 − 3 ) − ( − 1 ) 2 − 3 − ( − 1 ) = 1 + 3 4 ( 2 + 3 ) − ( − 1 ) 2 + 3 − ( − 1 ) = 1 4 , So the three inflection points are in a straight line . \begin{aligned} &\ \ y'=\frac{(x^2+1)-2x(x-1)}{(x^2+1)^2}=\frac{-x^2+2x+1}{(x^2+1)^2},\\\\ &\ \ y''=\frac{(-2x+2)(x^2+1)^2-2(x^2+1)\cdot 2x(-x^2+2x+1)}{(x^2+1)^4}=\frac{2x^3-6x^2-6x+2}{(x^2+1)^3}=\frac{2(x+1)[x-(2-\sqrt{3})][x-(2+\sqrt{3})]}{(x^2+1)^3}\\\\ &\ \ Make y''=0, have to x_1=-1,x_2=2-\sqrt{3},x_3=2+\sqrt{3},y_1=-1,y_2=\frac{1-\sqrt{3}}{4(2-\sqrt{3})},y_3=\frac{1+\sqrt{3}}{4(2+\sqrt{3})}\\\\ &\ \ When -\infty \lt x \lt -1 when ,y'' \lt 0, So the curve is (-\infty, \ -1] It's convex ,\\\\ &\ \ When -1 \lt x \lt 2-\sqrt{3} when ,y'' \gt 0, So the curve is [-1, \ 2-\sqrt{3}] The top is concave ,\\\\ &\ \ When 2-\sqrt{3} \lt x \lt 2+\sqrt{3} when ,y'' \lt 0, So the curve is [2-\sqrt{3}, \ 2+\sqrt{3}] It's convex ,\\\\ &\ \ When 2+\sqrt{3} \lt x \lt +\infty when ,y'' \gt 0, So the curve is [2+\sqrt{3}, \ +\infty) The top is concave ,\\\\ &\ \ So the curve has three inflection points , by (-1, \ -1),\left(2-\sqrt{3}, \ \frac{1-\sqrt{3}}{4(2-\sqrt{3})}\right),\left(2+\sqrt{3}, \ \frac{1+\sqrt{3}}{4(2+\sqrt{3})}\right)\\\\ &\ \ because \frac{\frac{1-\sqrt{3}}{4(2-\sqrt{3})}-(-1)}{2-\sqrt{3}-(-1)}=\frac{\frac{1+\sqrt{3}}{4(2+\sqrt{3})}-(-1)}{2+\sqrt{3}-(-1)}=\frac{1}{4}, So the three inflection points are in a straight line . & \end{aligned} y′=(x2+1)2(x2+1)−2x(x−1)=(x2+1)2−x2+2x+1, y′′=(x2+1)4(−2x+2)(x2+1)2−2(x2+1)⋅2x(−x2+2x+1)=(x2+1)32x3−6x2−6x+2=(x2+1)32(x+1)[x−(2−3)][x−(2+3)] Make y′′=0, have to x1=−1,x2=2−3,x3=2+3,y1=−1,y2=4(2−3)1−3,y3=4(2+3)1+3 When −∞<x<−1 when ,y′′<0, So the curve is (−∞, −1] It's convex , When −1<x<2−3 when ,y′′>0, So the curve is [−1, 2−3] The top is concave , When 2−3<x<2+3 when ,y′′<0, So the curve is [2−3, 2+3] It's convex , When 2+3<x<+∞ when ,y′′>0, So the curve is [2+3, +∞) The top is concave , So the curve has three inflection points , by (−1, −1),(2−3, 4(2−3)1−3),(2+3, 4(2+3)1+3) because 2−3−(−1)4(2−3)1−3−(−1)=2+3−(−1)4(2+3)1+3−(−1)=41, So the three inflection points are in a straight line .
13. ask a 、 b Why is it worth it , spot ( 1 , 3 ) Is a curve y = a x 3 + b x 2 Inflection point . \begin{aligned}&13. \ ask a、b Why is it worth it , spot (1, \ 3) Is a curve y=ax^3+bx^2 Inflection point .&\end{aligned} 13. ask a、b Why is it worth it , spot (1, 3) Is a curve y=ax3+bx2 Inflection point .
Explain :
y ′ = 3 a x 2 + 2 b x , y ′ ′ = 6 a x + 2 b = 6 a ( x + b 3 a ) , Make y ′ ′ = 0 , have to x = − b 3 a , When − ∞ < x < − b 3 a when , y ′ ′ < 0 , So the curve is ( − ∞ , − b 3 a ] It's convex , When − b 3 a < x < + ∞ when , y ′ ′ > 0 , So the curve is [ − b 3 a , + ∞ ) The top is concave , When x = − b 3 a when , y = a ( − b 3 a ) 3 + b ( − b 3 a ) 2 = 2 b 3 27 a 2 . because y ′ ′ stay x Different numbers on both sides of , So point ( − b 3 a , 2 b 3 27 a 2 ) Is the inflection point of the curve . Make some ( 1 , 3 ) It's the inflection point , be − b 3 a = 1 , 2 b 3 27 a 2 = 3 , Solution a = − 3 2 , b = 9 2 . \begin{aligned} &\ \ y'=3ax^2+2bx,y''=6ax+2b=6a\left(x+\frac{b}{3a}\right), Make y''=0, have to x=-\frac{b}{3a},\\\\ &\ \ When -\infty \lt x \lt -\frac{b}{3a} when ,y'' \lt 0, So the curve is \left(-\infty, \ -\frac{b}{3a}\right] It's convex ,\\\\ &\ \ When -\frac{b}{3a} \lt x \lt +\infty when ,y'' \gt 0, So the curve is \left[-\frac{b}{3a}, \ +\infty\right) The top is concave ,\\\\ &\ \ When x=-\frac{b}{3a} when ,y=a\left(-\frac{b}{3a}\right)^3+b\left(-\frac{b}{3a}\right)^2=\frac{2b^3}{27a^2}. because y'' stay x Different numbers on both sides of , So point \left(-\frac{b}{3a}, \ \frac{2b^3}{27a^2}\right) Is the inflection point of the curve .\\\\ &\ \ Make some (1, \ 3) It's the inflection point , be -\frac{b}{3a}=1,\frac{2b^3}{27a^2}=3, Solution a=-\frac{3}{2},b=\frac{9}{2}. & \end{aligned} y′=3ax2+2bx,y′′=6ax+2b=6a(x+3ab), Make y′′=0, have to x=−3ab, When −∞<x<−3ab when ,y′′<0, So the curve is (−∞, −3ab] It's convex , When −3ab<x<+∞ when ,y′′>0, So the curve is [−3ab, +∞) The top is concave , When x=−3ab when ,y=a(−3ab)3+b(−3ab)2=27a22b3. because y′′ stay x Different numbers on both sides of , So point (−3ab, 27a22b3) Is the inflection point of the curve . Make some (1, 3) It's the inflection point , be −3ab=1,27a22b3=3, Solution a=−23,b=29.
14. Try to determine the curve y = a x 3 + b x 2 + c x + d Medium a 、 b 、 c 、 d , bring x = − 2 The curve at has a horizontal tangent , ( 1 , − 10 ) It's the inflection point , And the point ( − 2 , 44 ) On the curve . \begin{aligned}&14. \ Try to determine the curve y=ax^3+bx^2+cx+d Medium a、b、c、d, bring x=-2 The curve at has a horizontal tangent ,(1, \ -10) It's the inflection point ,\\\\&\ \ \ \ \ \ And the point (-2, \ 44) On the curve .&\end{aligned} 14. Try to determine the curve y=ax3+bx2+cx+d Medium a、b、c、d, bring x=−2 The curve at has a horizontal tangent ,(1, −10) It's the inflection point , And the point (−2, 44) On the curve .
Explain :
y ′ = 3 a x 2 + 2 b x + c , y ′ ′ = 6 a x + 2 b , According to the meaning , Yes y ( − 2 ) = 44 , y ′ ( − 2 ) = 0 , y ( 1 ) = 10 , y ′ ′ ( 1 ) = 0 , namely { − 8 a + 4 b − 2 c + d = 44 , 12 a − 4 b + c = 0 , a + b + c + d = − 10 , 6 a + 2 b = 0. To solve the equation a = 1 , b = − 3 , c = − 24 , d = 16. \begin{aligned} &\ \ y'=3ax^2+2bx+c,y''=6ax+2b, According to the meaning , Yes y(-2)=44,y'(-2)=0,y(1)=10,y''(1)=0,\\\\ &\ \ namely \begin{cases}-8a+4b-2c+d=44,\\\\12a-4b+c=0,\\\\a+b+c+d=-10,\\\\6a+2b=0.\end{cases}\\\\ &\ \ To solve the equation a=1,b=-3,c=-24,d=16. & \end{aligned} y′=3ax2+2bx+c,y′′=6ax+2b, According to the meaning , Yes y(−2)=44,y′(−2)=0,y(1)=10,y′′(1)=0, namely ⎩⎨⎧−8a+4b−2c+d=44,12a−4b+c=0,a+b+c+d=−10,6a+2b=0. To solve the equation a=1,b=−3,c=−24,d=16.
15. Try to decide y = k ( x 2 − 3 ) 2 in k Value , Make the normal at the inflection point of the curve pass through the origin . \begin{aligned}&15. \ Try to decide y=k(x^2-3)^2 in k Value , Make the normal at the inflection point of the curve pass through the origin .&\end{aligned} 15. Try to decide y=k(x2−3)2 in k Value , Make the normal at the inflection point of the curve pass through the origin .
Explain :
y ′ = 2 k ( x 2 − 3 ) ⋅ 2 x = 4 k x ( x 2 − 3 ) , y ′ ′ = 4 k ( x 2 − 3 ) + 4 k x ⋅ 2 x = 12 k x ( x − 1 ) ( x + 1 ) . Make y ′ ′ = 0 , have to x 1 = − 1 , x 2 = 1 , y 1 = 4 k , y 2 = 4 k . When − ∞ < x < − 1 when , y ′ ′ > 0 , So the curve is ( − ∞ , − 1 ] The top is concave , When − 1 < x < 1 when , y ′ ′ < 0 , So the curve is [ − 1 , 1 ] It's convex , When 1 < x < + ∞ when , y ′ ′ > 0 , So the curve is [ 1 , + ∞ ) Concave up , So point ( − 1 , 4 k ) and ( 1 , 4 k ) Is the inflection point of the curve . When x = − 1 when , y ′ = 8 k , So a little ( − 1 , 4 k ) The normal equation of is Y − 4 k = − 1 8 k ( X + 1 ) . To make the normal cross the origin , The point of ( 0 , 0 ) Satisfy the normal equation , have to k = ± 2 8 When x = 1 when , y ′ = − 8 k , So a little ( 1 , 4 k ) The normal equation of is Y − 4 k = 1 8 k ( X − 1 ) . To make the normal cross the origin , The point of ( 0 , 0 ) Satisfy the normal equation , have to k = ± 2 8 , So when k = ± 2 8 when , The normal at the inflection point of the curve passes through the origin . \begin{aligned} &\ \ y'=2k(x^2-3)\cdot 2x=4kx(x^2-3),y''=4k(x^2-3)+4kx \cdot 2x=12kx(x-1)(x+1).\\\\ &\ \ Make y''=0, have to x_1=-1,x_2=1,y_1=4k,y_2=4k.\\\\ &\ \ When -\infty \lt x \lt -1 when ,y'' \gt 0, So the curve is (-\infty, \ -1] The top is concave ,\\\\ &\ \ When -1 \lt x \lt 1 when ,y'' \lt 0, So the curve is [-1,\ 1] It's convex ,\\\\ &\ \ When 1 \lt x \lt +\infty when ,y'' \gt 0, So the curve is [1, \ +\infty) Concave up , So point (-1, \ 4k) and (1, \ 4k) Is the inflection point of the curve .\\\\ &\ \ When x=-1 when ,y'=8k, So a little (-1, \ 4k) The normal equation of is Y-4k=-\frac{1}{8k}(X+1).\\\\ &\ \ To make the normal cross the origin , The point of (0, \ 0) Satisfy the normal equation , have to k=\pm \frac{\sqrt{2}}{8}\\\\ &\ \ When x=1 when ,y'=-8k, So a little (1, \ 4k) The normal equation of is Y-4k=\frac{1}{8k}(X-1).\\\\ &\ \ To make the normal cross the origin , The point of (0, \ 0) Satisfy the normal equation , have to k=\pm \frac{\sqrt{2}}{8}, So when k=\pm \frac{\sqrt{2}}{8} when , The normal at the inflection point of the curve passes through the origin . & \end{aligned} y′=2k(x2−3)⋅2x=4kx(x2−3),y′′=4k(x2−3)+4kx⋅2x=12kx(x−1)(x+1). Make y′′=0, have to x1=−1,x2=1,y1=4k,y2=4k. When −∞<x<−1 when ,y′′>0, So the curve is (−∞, −1] The top is concave , When −1<x<1 when ,y′′<0, So the curve is [−1, 1] It's convex , When 1<x<+∞ when ,y′′>0, So the curve is [1, +∞) Concave up , So point (−1, 4k) and (1, 4k) Is the inflection point of the curve . When x=−1 when ,y′=8k, So a little (−1, 4k) The normal equation of is Y−4k=−8k1(X+1). To make the normal cross the origin , The point of (0, 0) Satisfy the normal equation , have to k=±82 When x=1 when ,y′=−8k, So a little (1, 4k) The normal equation of is Y−4k=8k1(X−1). To make the normal cross the origin , The point of (0, 0) Satisfy the normal equation , have to k=±82, So when k=±82 when , The normal at the inflection point of the curve passes through the origin .
16. set up y = f ( x ) stay x = x 0 Has a third-order continuous derivative in a neighborhood of , If f ′ ′ ( x 0 ) = 0 , and f ′ ′ ′ ( x 0 ) ≠ 0 , Try to ask ( x 0 , f ( x 0 ) ) Is it the inflection point ? Why? ? \begin{aligned}&16. \ set up y=f(x) stay x=x_0 Has a third-order continuous derivative in a neighborhood of , If f''(x_0)=0, and f'''(x_0) \neq 0,\\\\&\ \ \ \ \ \ Try to ask (x_0, \ f(x_0)) Is it the inflection point ? Why? ?&\end{aligned} 16. set up y=f(x) stay x=x0 Has a third-order continuous derivative in a neighborhood of , If f′′(x0)=0, and f′′′(x0)=0, Try to ask (x0, f(x0)) Is it the inflection point ? Why? ?
Explain :
It is known that f ′ ′ ′ ( x 0 ) ≠ 0 , hypothesis f ′ ′ ′ ( x 0 ) > 0 , because f ′ ′ ′ ( x 0 ) stay x = x 0 Continuous in a neighborhood of , So there must be δ > 0 , When x ∈ ( x 0 − δ , x 0 + δ ) when , f ′ ′ ′ ( x 0 ) > 0 , So in ( x 0 − δ , x 0 + δ ) Inside f ′ ′ ( x ) Monotonous increase , Again because f ′ ′ ( x 0 ) = 0 , So when x ∈ ( x 0 − δ , x 0 ) when , f ′ ′ ( x ) < f ′ ′ ( x 0 ) = 0 , be f ( x ) stay ( x 0 − δ , x 0 ) The figure inside is convex , When x ∈ ( x 0 , x 0 + δ ) when , f ′ ′ ( x ) > f ′ ′ ( x 0 ) = 0 , be f ( x ) stay ( x 0 , x 0 + δ ) The figure inside is concave , So point ( x 0 , f ( x 0 ) ) Is the inflection point of the curve . \begin{aligned} &\ \ It is known that f'''(x_0) \neq 0, hypothesis f'''(x_0) \gt 0, because f'''(x_0) stay x=x_0 Continuous in a neighborhood of , So there must be \delta \gt 0,\\\\ &\ \ When x \in (x_0-\delta, \ x_0+\delta) when ,f'''(x_0) \gt 0, So in (x_0-\delta, \ x_0+\delta) Inside f''(x) Monotonous increase ,\\\\ &\ \ Again because f''(x_0)=0, So when x \in (x_0-\delta, \ x_0) when ,f''(x) \lt f''(x_0)=0, be f(x) stay (x_0-\delta, \ x_0) The figure inside is convex ,\\\\ &\ \ When x \in (x_0, \ x_0+\delta) when ,f''(x) \gt f''(x_0)=0, be f(x) stay (x_0, \ x_0+\delta) The figure inside is concave , So point (x_0, \ f(x_0)) Is the inflection point of the curve . & \end{aligned} It is known that f′′′(x0)=0, hypothesis f′′′(x0)>0, because f′′′(x0) stay x=x0 Continuous in a neighborhood of , So there must be δ>0, When x∈(x0−δ, x0+δ) when ,f′′′(x0)>0, So in (x0−δ, x0+δ) Inside f′′(x) Monotonous increase , Again because f′′(x0)=0, So when x∈(x0−δ, x0) when ,f′′(x)<f′′(x0)=0, be f(x) stay (x0−δ, x0) The figure inside is convex , When x∈(x0, x0+δ) when ,f′′(x)>f′′(x0)=0, be f(x) stay (x0, x0+δ) The figure inside is concave , So point (x0, f(x0)) Is the inflection point of the curve .
边栏推荐
- LabVIEW加载和使用树型控件项目中的定制符号
- Digital economy has become the biggest attraction
- In December, the PMP Exam adopted the new syllabus for the first time. How to learn?
- C语言:求一个整数存储在内存中的二进制中1的个数
- Illustrated: detailed explanation of JVM memory layout
- leetcode刷题:动态规划08(分割等和子集)
- 2022-07-27:小红拿到了一个长度为N的数组arr,她准备只进行一次修改, 可以将数组中任意一个数arr[i],修改为不大于P的正数(修改后的数必须和原数不同), 并使得所有数之和为X的倍数。
- Push chart written by helm to harbor warehouse
- LeetCode_409_最长回文串
- How to uninstall clean ZABBIX service? (super detailed)
猜你喜欢

8000 word explanation of OBSA principle and application practice

C语言:求一个整数存储在内存中的二进制中1的个数

接口自动化测试,完整入门篇

Prefix-Tuning: Optimizing Continuous Prompts for Generation

一篇文章掌握Postgresql中对于日期类数据的计算和处理

Protocols in swift

C语言:不创建临时变量实现两数交换

Implementation of online rental system based on SSM

Qt:qmessagebox message box, custom signal and slot

695. 岛屿的最大面积
随机推荐
2022 summary of the latest Android handler related interview questions
ASEMI整流桥GBPC5010,GBPC5010参数,GBPC5010大小
【力扣】1337.矩阵中战斗力最弱的k行
8000 word explanation of OBSA principle and application practice
我的创作纪念日
Tensorboard usage record
SAP UI5 FileUploader 控件深入介绍 - 为什么需要一个隐藏的 iframe 试读版
【P4】 查看库文件两个历史版本的区别
单调栈——739. 每日温度
动态规划——416. 分割等和子集
接口自动化测试,完整入门篇
Xctf attack and defense world web master advanced area php2
8000字讲透OBSA原理与应用实践
MySQL Basics (create, manage, add, delete, and modify tables)
《剑指offer》| 刷题小记
C语言:求一个整数存储在内存中的二进制中1的个数
203.移除链表元素
[错题]Mocha and Railgun
CF question making record from July 25th to July 31st
Volvo: what on earth does the deep-rooted "sense of security" rely on?