当前位置:网站首页>Beam pattern analysis based on spectral weighting
Beam pattern analysis based on spectral weighting
2022-06-10 18:56:00 【Master World】
Beam pattern analysis based on spectral weighting
Spectral weighting
This article mainly analyzes the linear array , The following formula gives u u u The derivation formula of spatial beam pattern
B u ( u ) = ω H v u ( u ) = e − j N − 1 2 2 π d λ u ∑ n = 0 N − 1 ω n ∗ e j n 2 π d λ u B_u(u)=\omega^Hv_u(u)=e^{-j\frac{N-1}{2}\frac{2\pi d}{\lambda}u}\sum_{n=0}^{N-1}\omega^*_ne^{jn\frac{2\pi d}{\lambda}u} Bu(u)=ωHvu(u)=e−j2N−1λ2πdun=0∑N−1ωn∗ejnλ2πdu
We can see , The beam pattern is the product of weight and manifold vector , This paper mainly analyzes the different effects of different weights on the beam pattern , Because the weights considered below are all real symmetric , So you can put n The positions of the array elements are replaced by the following labels n ~ = n − N − 1 2 , n = 0 , 1 , ⋯ , N − 1 \tilde{n}=n-\frac{N-1}{2},n=0,1,\cdots,N-1 n~=n−2N−1,n=0,1,⋯,N−1
cosine weighting
consider N In the case of an odd number ,cosine A weight of ω ( n ~ ) = s i n ( π 2 N ) c o s ( π n ~ N ) , − N − 1 2 ≤ n ~ ≤ N − 1 2 \omega(\tilde{n})=sin(\frac{\pi}{2N})cos(\pi\frac{\tilde{n}}{N}),-\frac{N-1}{2}\leq \tilde{n}\leq\frac{N-1}{2} ω(n~)=sin(2Nπ)cos(πNn~),−2N−1≤n~≤2N−1
among s i n ( π 2 N ) sin(\frac{\pi}{2N}) sin(2Nπ) It's a constant , The purpose is to yes B u ( 0 ) = 1 , hold c o s i n e Write become finger Count shape type , By Step change shape most end can With have to To B_u(0)=1, hold cosine In exponential form , Step by step deformation will eventually lead to Bu(0)=1, hold cosine Write become finger Count shape type , By Step change shape most end can With have to To
B u ( u ) = 1 2 s i n ( π 2 N ) { s i n ( N π 2 ( u − 1 N ) ) s i n ( π 2 ( u − 1 N ) ) + s i n ( N π 2 ( u + 1 N ) ) s i n ( π 2 ( u + 1 N ) ) } B_u(u)=\frac{1}{2}sin(\frac{\pi}{2N})\{\frac{sin(\frac{N\pi}{2}(u-\frac{1}{N}))}{sin(\frac{\pi}{2}(u-\frac{1}{N}))}+\frac{sin(\frac{N\pi}{2}(u+\frac{1}{N}))}{sin(\frac{\pi}{2}(u+\frac{1}{N}))}\} Bu(u)=21sin(2Nπ){ sin(2π(u−N1))sin(2Nπ(u−N1))+sin(2π(u+N1))sin(2Nπ(u+N1))}
We can make direct use of the computing power of the computer , Let it help us deal with the product of weights and manifold vectors , The results are given below 
We can see that the side lobe becomes lower , And the main lobe widened , Let's take a look at the comparison of various data 
matlab Code
clear all
close all
M=11;
d=0.5; % sensor spacing wrt wavelength
D = [-(M-1)/2:1:(M-1)/2]*d; % sensor positions in wavelengths
% weights, normalized so that w(0)=1
W_unf = ones(1,M);
W_cos = cos(pi*D*2/M);
% Beampatterns
u = [0:0.001:1];
A = exp(-j*2*pi*D.'*u);
G_unf = W_unf*A;
G_unf = G_unf/(max(abs(G_unf)));
G_cos = W_cos*A;
G_cos = G_cos/(max(abs(G_cos)));
figure
% array only
clf
plot(u,20*log10(abs(G_unf)),'--')
hold on
plot(u,20*log10(abs(G_cos)),'-')
hold off
axis([0 1 -80 0])
%title([int2str(M) ' element array'])
h=legend('Uniform','Cosine');
set(h,'Fontsize',12)
xlabel('\it u','Fontsize',14)
ylabel('Beam pattern (dB)','Fontsize',14)
Raised cosine weighting
A weight ω ( n ~ ) = c ( p ) ( p + ( 1 − p ) c o s ( π n ~ N ) ) , n ~ = − N − 1 2 , ⋯ , N − 1 2 \omega(\tilde n)=c(p)(p+(1-p)cos(\pi\frac{\tilde n}{N})),\tilde n =-\frac{N-1}{2}, \cdots,\frac{N-1}{2} ω(n~)=c(p)(p+(1−p)cos(πNn~)),n~=−2N−1,⋯,2N−1
among c ( p ) c(p) c(p) It's a constant , bring B u ( 0 ) = 1 B_u(0)=1 Bu(0)=1 c ( p ) = p N + ( 1 − p ) 2 s i n ( π 2 N ) c(p)=\frac{p}{N}+\frac{(1-p)}{2}sin(\frac{\pi}{2N}) c(p)=Np+2(1−p)sin(2Nπ)
The figure below shows p = 0.31 , 0.17 , 0 p=0.31,0.17,0 p=0.31,0.17,0 Beam pattern at 

When p p p Less hours , The height of the first side lobe decreases , The main beam width increases , So we can already make HPBW Narrowing , And the first side lobe is much lower than that in the case of uniform distribution
matlab Code
clear all
close all
M=11;
d=0.5; % sensor spacing wrt wavelength
D = [-(M-1)/2:1:(M-1)/2]*d; % sensor positions in wavelengths
% weights, normalized so that w(0)=1
p=[0;0.17;0.31;1];
W_rcos = p*ones(1,M)+(ones(4,1)-p)*cos(pi*D*2/M);
% Beampatterns
u = [0:0.001:1];
c=p+(ones(4,1)-p)*2/pi;
A = exp(-j*2*pi*D.'*u);
G_rcos = W_rcos*A;
for m=1:4
G_rcos(m,:) = G_rcos(m,:)/(max(abs(G_rcos(m,:))));
end
figure
clf
plot(u,20*log10(abs(G_rcos(3,:))),'-.')
hold on
plot(u,20*log10(abs(G_rcos(2,:))),'--')
plot(u,20*log10(abs(G_rcos(1,:))),'-')
hold off
axis([0 1 -80 0])
h=legend('{\it p}=0.31','{\it p}=0.17','{\it p}=0');
set(h,'Fontsize',12)
xlabel('\it u','Fontsize',14)
ylabel('Beam pattern (dB)','Fontsize',14)
cosinem weighting
A series of cosine weighting , formation c o s m ( π n ~ N ) cos^m(\frac{\pi\tilde n}{N}) cosm(Nπn~),z The weight of the array is
ω m ( n ~ ) = { c 2 c o s 2 ( π n ~ N ) , m = 2 c 3 c o s 3 ( π n ~ N ) , m = 3 c 4 c o s 4 ( π n ~ N ) , m = 4 \omega_m(\tilde n) = \begin{cases} c_2cos^2(\frac{\pi\tilde n}{N}), & m=2 \\ c_3cos^3(\frac{\pi\tilde n}{N}), & m=3 \\ c_4cos^4(\frac{\pi\tilde n}{N}),& m=4 \\ \end{cases} ωm(n~)=⎩⎪⎨⎪⎧c2cos2(Nπn~),c3cos3(Nπn~),c4cos4(Nπn~),m=2m=3m=4
among c 2 , c 3 , c 4 c_2,c_3,c_4 c2,c3,c4 It is still a normalized constant
The following figure shows the beam pattern , When m increases , Sidelobe reduction , But the main beam becomes wider 

matlab Code
clear all
close all
M=11;
d=0.5; % sensor spacing wrt wavelength
D = [-(M-1)/2:1:(M-1)/2]*d; % sensor positions in wavelengths
% weights, normalized so that w(0)=1
W_cos2 = cos(pi*D*2/M).^2;
W_cos3 = cos(pi*D*2/M).^3;
W_cos4 = cos(pi*D*2/M).^4;
% Beampatterns
u = [0:0.001:1];
A = exp(-j*2*pi*D.'*u);
G_cos2 = W_cos2*A;
G_cos2 = G_cos2/(max(abs(G_cos2)));
G_cos3 = W_cos3*A;
G_cos3 = G_cos3/(max(abs(G_cos3)));
G_cos4 = W_cos4*A;
G_cos4 = G_cos4/(max(abs(G_cos4)));
figure
clf
plot(u,20*log10(abs(G_cos2)),'--')
hold on
plot(u,20*log10(abs(G_cos3)),'-')
plot(u,20*log10(abs(G_cos4)),'-.')
hold off
axis([0 1 -80 0])
h=legend('{\it m}=2','{\it m}=3','{\it m}=4');
set(h,'Fontsize',12)
xlabel('\it u','Fontsize',14)
ylabel('Beam pattern (dB)','Fontsize',14)
summary
The above analysis cosine Weighting and its several deformations , Overall speaking ,cosine Weighting widens the width of the main lobe but lowers the height of the first side lobe , And in the raised cosine weighting ,p The smaller the size, the more obvious the trend , Also in cosine Of m Power weighted ,m The bigger, the more obvious .
边栏推荐
- Linked List
- AgI foundation, uncertain reasoning, subjective logic Ppt1
- 半导体硅片持续供不应求,胜高长期合约价上涨30%!
- In the digital age, why should enterprises make digital transformation?
- Adobe Premiere基础-介绍,配置,快捷键,创建项目,创建序列(一)
- 商业智能BI的服务对象,企业管理者的管理“欲望”该如何实现?
- Db2 SQL PL的锚点类型和行数据类型
- Db2 SQL PL的数组类型
- Use of uiautomator2 automated test tool
- TestNG的HelloWorld例子以及如何在命令行下运行
猜你喜欢
随机推荐
How to correctly understand the real-time nature of Bi?
直播预告 | 解构OLAP!新型多维分析架构范式全公开!Apache Doris 将带来五个重磅议题!
Adobe Premiere基础-工具使用(选择工具,剃刀工具,等常用工具)(三)
&& 与 ||
JS Touch
Stream流的常用方法-Lambder
Huawei cloud Kunpeng devkit code migration practice
Ruijie x32pro brush openwrt enable wireless 160MHz
In the digital era, how can enterprises manage data security and ensure the security of data assets
[kuangbin] topic 22 interval DP
Adobe Premiere基础-导入导出,合并素材,源文件编译,脱机(二)
第二章 数据类型(一)
Adobe Premiere基础(视频的最后一步字幕添加)(六)
Anchor type and row data type of DB2 SQL pl
Three ways generated by stream lambda
Adobe Premiere基础-介绍,配置,快捷键,创建项目,创建序列(一)
Common methods of stream flow lambder
Seata installing the window environment
企业管理者的质疑,这么多年的信息化,我们的钱花哪去了?
LoRa模块无线收发通信技术详解









