当前位置:网站首页>[Deep Learning 21 Days Learning Challenge] 2. Complex sample classification and recognition - convolutional neural network (CNN) clothing image classification

[Deep Learning 21 Days Learning Challenge] 2. Complex sample classification and recognition - convolutional neural network (CNN) clothing image classification

2022-08-04 06:05:00 Live up to [email protected]

活动地址:CSDN21天学习挑战赛

完成了深度学习环境搭建卷积神经网络(CNN)实现mnist手写数字识别的学习实践,最后Summarize the knowledge points,今天,Continue to study with the teacher卷积神经网络(CNN)服装图像分类.

学习总结如下:(代码附后)

1、数据分析

1.1 了解fashion_mnist数据集

The teacher loads the dataset: datasets.fashion_mnist.load_data()
用到的是:fashion_mnist数据集

FashionMNIST 是一个图像数据集. It is provided by a German fashion technology company.其涵盖了来自 10 种类别的共 7 万个Front images of different products.FashionMNIST 的大小、格式和训练集/测试集划分与原始的 MNIST 完全一致.60000/10000的训练测试数据划分,28x28 的灰度图片.

Data classification instructions

标签值分类
0T恤 / 上衣 (T-shirt/top)
1裤子 (Trouser)
2套衫 (Pullover)
3连衣裙 (Dress)
4外套 (Coat)
5凉鞋 (Sandal)
6衬衫 (Shirt)
7运动鞋 (Sneaker)
8包 (Bag)
9短靴 (Ankle boot)

Data visualization preview
在这里插入图片描述

1.2 分析数据集

with just learned手写识别数据集比较,This time the clothing classification dataset特点明显,i.e. like data complexity:服装分类的数据复杂度significantly higher than手写数据.

在这里插入图片描述
在这里插入图片描述
数据大小:同样都是7 万个样本,训练集/The test set is divided the same:60000/10000,28x28 的灰度图片.

分类情况:都是多分类(10分类)

2、模型搭建

Comparison with handwriting recognition models,One more convolutional layer is added,We concluded in the previous section,卷积层的作用是:用于从输入的高维数组中提取特征.Each convolution kernel of a convolutional layer is a feature map,用于提取某一个特征,The number of convolution kernels determines the number of output features of the convolution layer .

在这里插入图片描述
在这里插入图片描述

model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), #卷积层1,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3
    
    layers.Flatten(),                      #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取
    layers.Dense(10)                       #输出层,输出预期结果
])

使用model.summary() , 打印网络结构,如下:
在这里插入图片描述

3、配置模型

因为和手写识别模型一样,are used for training classification,所以,此处用到的优化器、损失函数、指标参数一致.

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

4、训练模型

history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))
  • validation_data=(测试集输入特征,测试集标签)
  • epochs = 迭代次数

这里的historyis the data returned by receiving model training,其中包含:

  • loss:训练集损失值
  • accuracy:训练集准确率
  • val_loss:测试集损失值
  • val_accruacy:测试集准确率
    我们打印看看:print(history.history)
    在这里插入图片描述

训练过程:
在这里插入图片描述
输出说明:

  • loss:训练集损失值
  • accuracy:训练集准确率
  • val_loss:测试集损失值
  • val_accruacy:测试集准确率

5、测试集预测

在这里插入图片描述
在这里插入图片描述

6、模型评估

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print("测试准确率为:",test_acc)

在这里插入图片描述
在这里插入图片描述

7、完整代码

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
import numpy as np
(train_images, train_labels), (test_images, test_labels) = datasets.fashion_mnist.load_data() 
train_images, test_images = train_images / 255.0, test_images / 255.0 
#调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
plt.figure(figsize=(20,10))
for i in range(20):
    plt.subplot(5,10,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])
plt.show()
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), #卷积层1,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3
    
    layers.Flatten(),                      #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取
    layers.Dense(10)                       #输出层,输出预期结果
])
model.summary()
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))
plt.imshow(test_images[1])
pre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print("测试准确率为:",test_acc)

学习日记

**
1,学习知识点

a、认识和使用fashion_mnist数据集
b、卷积神经网络(CNN)Basic use of complex sample classification and recognition
c、模型评估方法

2,学习遇到的问题

Continue to nibble on the watermelon book,bad tonic foundation

原网站

版权声明
本文为[Live up to [email protected]]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/216/202208040525326978.html