当前位置:网站首页>PI control of three-phase grid connected inverter - off grid mode
PI control of three-phase grid connected inverter - off grid mode
2022-07-02 09:38:00 【Quikk】
Three phase grid connected inverter is off grid PI control
Off grid control of three-phase grid connected inverter
The basic difference between inverter parallel and off grid control
When the three-phase grid connected inverter is connected to the grid , Its main function is to transmit electric energy to the large power grid . At this time, the system parallel node voltage is Big grid clamping , Therefore, it is only necessary to control the inverter to output the current that meets the power requirements , Control objectives can be achieved , Therefore, the grid connected inverter in this state is generally equivalent to Current source .
When the three-phase grid connected inverter is off grid , Its main function is to output the voltage that meets the load operation conditions , Current system System output current All by load Self parameters decision . Therefore, the grid connected inverter in this state is generally equivalent to Voltage source .
Basic topology of off grid inverter
The following figure shows the inverter topology in the off grid state , Here we use pure resistance instead of pure resistive load :

Take the direction of the inverter pointing to the load current as the positive direction of the current reference , In the picture i a i_{a} ia The direction indicated is positive .
{ U a − L d i a d t − i a R − U C a = 0 U b − L d i b d t − i b R − U C b = 0 U c − L d i c d t − i c R − U C c = 0 C d u C a d t = i a − i g a C d u C b d t = i b − i g b C d u C c d t = i c − i g c (1) \left\{ \begin{matrix}{} U_a-L\frac{di_a}{dt}-i_aR-U_{Ca}=0\\ U_b-L\frac{di_b}{dt}-i_bR-U_{Cb}=0\\ U_c-L\frac{di_c}{dt}-i_cR-U_{Cc}=0\\ C\frac{du_{Ca}}{dt}=i_a-i_{ga}\\ C\frac{du_{Cb}}{dt}=i_b-i_{gb}\\ C\frac{du_{Cc}}{dt}=i_c-i_{gc}\\ \end{matrix} \right.\tag{1} ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧Ua−Ldtdia−iaR−UCa=0Ub−Ldtdib−ibR−UCb=0Uc−Ldtdic−icR−UCc=0CdtduCa=ia−igaCdtduCb=ib−igbCdtduCc=ic−igc(1)
You can get :
{ d i a d t = 1 L U a − R L i a − 1 L U C a d i b d t = 1 L U b − R L i b − 1 L U C b d i c d t = 1 L U c − R L i c − 1 L U C c d u C a d t = 1 C i a − 1 C i g a d u C b d t = 1 C i b − 1 C i g b d u C c d t = 1 C i c − 1 C i g c (2) \left\{ \begin{matrix}{} \frac{di_a}{dt}=\frac{1}{L}U_a-\frac{R}{L}i_a-\frac{1}{L}U_{Ca}\\ \frac{di_b}{dt}=\frac{1}{L}U_b-\frac{R}{L}i_b-\frac{1}{L}U_{Cb}\\ \frac{di_c}{dt}=\frac{1}{L}U_c-\frac{R}{L}i_c-\frac{1}{L}U_{Cc}\\ \frac{du_{Ca}}{dt}=\frac{1}{C}i_a-\frac{1}{C}i_{ga}\\ \frac{du_{Cb}}{dt}=\frac{1}{C}i_b-\frac{1}{C}i_{gb}\\ \frac{du_{Cc}}{dt}=\frac{1}{C}i_c-\frac{1}{C}i_{gc}\\ \end{matrix} \right.\tag{2} ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧dtdia=L1Ua−LRia−L1UCadtdib=L1Ub−LRib−L1UCbdtdic=L1Uc−LRic−L1UCcdtduCa=C1ia−C1igadtduCb=C1ib−C1igbdtduCc=C1ic−C1igc(2)
In the form of a matrix :
{ [ d i a d t d i b d t d i c d t ] = 1 L [ U a U b U c ] − R L [ i a i b i c ] − 1 L [ U C a U C b U C c ] [ d U C a d t d U C b d t d U C c d t ] = 1 C [ i a i b i c ] − 1 C [ i g a i g b i g c ] (3) \left\{ \begin{matrix}{} \left[ \begin{matrix}{} \frac{di_a}{dt}\\ \frac{di_b}{dt}\\ \frac{di_c}{dt} \end{matrix} \right]= \frac{1}{L} \left[ \begin{matrix}{} U_a\\ U_b\\ U_c\\ \end{matrix} \right]- \frac{R}{L} \left[ \begin{matrix}{} i_a\\ i_b\\ i_c\\ \end{matrix} \right]- \frac{1}{L} \left[ \begin{matrix}{} U_{Ca}\\ U_{Cb}\\ U_{Cc}\\ \end{matrix} \right]\\ \left[ \begin{matrix}{} \frac{dU_{Ca}}{dt}\\ \frac{dU_{Cb}}{dt}\\ \frac{dU_{Cc}}{dt} \end{matrix} \right]= \frac{1}{C} \left[ \begin{matrix}{} i_a\\ i_b\\ i_c\\ \end{matrix} \right]- \frac{1}{C} \left[ \begin{matrix}{} i_{ga}\\ i_{gb}\\ i_{gc}\\ \end{matrix} \right] \end{matrix} \right.\tag{3} ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎣⎡dtdiadtdibdtdic⎦⎤=L1⎣⎡UaUbUc⎦⎤−LR⎣⎡iaibic⎦⎤−L1⎣⎡UCaUCbUCc⎦⎤⎣⎡dtdUCadtdUCbdtdUCc⎦⎤=C1⎣⎡iaibic⎦⎤−C1⎣⎡igaigbigc⎦⎤(3)
α β \alpha\beta αβ Inverter equation in coordinate system
And the known abc- α β \alpha\beta αβ The positive and inverse transformation matrix is :
[ U α U β U 0 ] = T a b c − α β [ U a U b U c ] = 2 3 × [ 1 − 1 2 − 1 2 0 3 2 − 3 2 1 1 1 ] [ U a U b U c ] (4) \left[ \begin {matrix}{} U_\alpha\\ U_\beta\\ U_0 \end{matrix} \right] = T_{abc-\alpha\beta} \left[ \begin {matrix} U_a\\ U_b\\ U_c \end{matrix} \right] = \frac{2}{3}\times \left[ \begin {matrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2}\\ 1 & 1 & 1 \end{matrix} \right] \left[ \begin {matrix} U_a\\ U_b\\ U_c \end{matrix} \right]\tag{4} ⎣⎡UαUβU0⎦⎤=Tabc−αβ⎣⎡UaUbUc⎦⎤=32×⎣⎡101−21231−21−231⎦⎤⎣⎡UaUbUc⎦⎤(4)
[ U a U b U c ] = T α β − a b c [ U α U β U 0 ] = [ 1 0 1 2 − 1 2 3 2 1 2 − 1 2 − 3 2 1 2 ] [ U α U β U 0 ] (5) \left[ \begin {matrix}{} U_a\\ U_b\\ U_c \end{matrix} \right]= T_{\alpha\beta-abc} \left[ \begin {matrix} U_{\alpha}\\ U_{\beta}\\ U_0 \end{matrix} \right]= \left[ \begin {matrix} 1 & 0 & \frac{1}{2}\\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{2}\\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{matrix} \right] \left[ \begin {matrix} U_{\alpha}\\ U_{\beta}\\ U_0 \end{matrix} \right]\tag{5} ⎣⎡UaUbUc⎦⎤=Tαβ−abc⎣⎡UαUβU0⎦⎤=⎣⎢⎡1−21−21023−23212121⎦⎥⎤⎣⎡UαUβU0⎦⎤(5)
Here we add 0 The axis is to make the transformation matrix into a square matrix , It is conducive to the inversion , actually 0 Axis No participation Control operation uses .
fitting (3) Multiply both sides at the same time T a b c − α β T_{abc-\alpha\beta} Tabc−αβ The inverter equation can be transformed to α β \alpha\beta αβ In coordinate system , Available :
T a b c − α β [ d i a d t d i b d t d i c d t ] = 1 L T a b c − α β [ U a U b U c ] − R L T a b c − α β [ i a i b i c ] − 1 L T a b c − α β [ U C a U C b U C c ] \begin{matrix}{} T_{abc-\alpha\beta} \left[ \begin{matrix}{} \frac{di_a}{dt}\\ \frac{di_b}{dt}\\ \frac{di_c}{dt} \end{matrix} \right]= \frac{1}{L} T_{abc-\alpha\beta} \left[ \begin{matrix}{} U_a\\ U_b\\ U_c\\ \end{matrix} \right]- \frac{R}{L} T_{abc-\alpha\beta} \left[ \begin{matrix}{} i_a\\ i_b\\ i_c\\ \end{matrix} \right]- \frac{1}{L} T_{abc-\alpha\beta} \left[ \begin{matrix}{} U_{Ca}\\ U_{Cb}\\ U_{Cc}\\ \end{matrix} \right]\\ \end{matrix}{} Tabc−αβ⎣⎡dtdiadtdibdtdic⎦⎤=L1Tabc−αβ⎣⎡UaUbUc⎦⎤−LRTabc−αβ⎣⎡iaibic⎦⎤−L1Tabc−αβ⎣⎡UCaUCbUCc⎦⎤
Note here that only
[ U α U β U 0 ] = T a b c − α β [ U a U b U c ] \left[ \begin {matrix}{} U_\alpha\\ U_\beta\\ U_0 \end{matrix} \right]= T_{abc-\alpha\beta} \left[ \begin {matrix} U_a\\ U_b\\ U_c \end{matrix} \right] ⎣⎡UαUβU0⎦⎤=Tabc−αβ⎣⎡UaUbUc⎦⎤
therefore T a b c − α β [ d i a d t d i b d t d i c d t ] T_{abc-\alpha\beta} \left[ \begin{matrix}{} \frac{di_a}{dt}\\ \frac{di_b}{dt}\\ \frac{di_c}{dt} \end{matrix} \right] Tabc−αβ⎣⎡dtdiadtdibdtdic⎦⎤ It needs to be calculated separately , The calculation process is as follows :
[ i α i β i 0 ] ′ = ( T a b c − α β [ i a i b i c ] ) ′ = ( T a b c − α β ) ′ [ i a i b i c ] + ( T a b c − α β ) [ d i a d t d i b d t d i c d t ] \left[ \begin {matrix}{} i_\alpha\\ i_\beta\\ i_0 \end{matrix} \right]' = (T_{abc-\alpha\beta} \left[ \begin {matrix}{} i_a\\ i_b\\ i_c \end{matrix} \right])' = (T_{abc-\alpha\beta})' \left[ \begin {matrix}{} i_a\\ i_b\\ i_c \end{matrix} \right] + (T_{abc-\alpha\beta}) \left[ \begin{matrix}{} \frac{di_a}{dt}\\ \frac{di_b}{dt}\\ \frac{di_c}{dt} \end{matrix} \right] ⎣⎡iαiβi0⎦⎤′=(Tabc−αβ⎣⎡iaibic⎦⎤)′=(Tabc−αβ)′⎣⎡iaibic⎦⎤+(Tabc−αβ)⎣⎡dtdiadtdibdtdic⎦⎤
therefore
T a b c − α β [ d i a d t d i b d t d i c d t ] = ( T a b c − α β [ i a i b i c ] ) ′ − ( T a b c − α β ) ′ [ i a i b i c ] T_{abc-\alpha\beta} \left[ \begin{matrix}{} \frac{di_a}{dt}\\ \frac{di_b}{dt}\\ \frac{di_c}{dt} \end{matrix} \right] = (T_{abc-\alpha\beta} \left[ \begin {matrix}{} i_a\\ i_b\\ i_c \end{matrix} \right])' - (T_{abc-\alpha\beta})' \left[ \begin {matrix}{} i_a\\ i_b\\ i_c \end{matrix} \right] Tabc−αβ⎣⎡dtdiadtdibdtdic⎦⎤=(Tabc−αβ⎣⎡iaibic⎦⎤)′−(Tabc−αβ)′⎣⎡iaibic⎦⎤
and ( T a b c − α β ) (T_{abc-\alpha\beta}) (Tabc−αβ) Is a constant matrix , therefore
( T a b c − α β ) ′ = 0 (T_{abc-\alpha\beta})'=0 (Tabc−αβ)′=0
therefore :
T a b c − α β [ d i a d t d i b d t d i c d t ] = [ d i α d t d i β d t d i 0 d t ] T_{abc-\alpha\beta} \left[ \begin{matrix}{} \frac{di_a}{dt}\\ \frac{di_b}{dt}\\ \frac{di_c}{dt} \end{matrix} \right] = \left[ \begin{matrix}{} \frac{di_{\alpha}}{dt}\\ \frac{di_{\beta}}{dt}\\ \frac{di_0}{dt} \end{matrix} \right] Tabc−αβ⎣⎡dtdiadtdibdtdic⎦⎤=⎣⎡dtdiαdtdiβdtdi0⎦⎤
The same can be :
{ [ d i α d t d i β d t d i 0 d t ] = 1 L [ U α U β U 0 ] − R L [ i α i β i 0 ] − 1 L [ U C α U C β U C 0 ] [ d U C α d t d U C β d t d U C 0 d t ] = 1 C [ i α i β i 0 ] − 1 C [ i g α i g β i g 0 ] (6) \left\{ \begin{matrix}{} \left[ \begin{matrix}{} \frac{di_{\alpha}}{dt}\\ \frac{di_{\beta}}{dt}\\ \frac{di_0}{dt} \end{matrix} \right] = \frac{1}{L} \left[ \begin{matrix}{} U_{\alpha}\\ U_{\beta}\\ U_0\\ \end{matrix} \right] - \frac{R}{L} \left[ \begin{matrix}{} i_{\alpha}\\ i_{\beta}\\ i_0\\ \end{matrix} \right] - \frac{1}{L} \left[ \begin{matrix}{} U_{C\alpha}\\ U_{C\beta}\\ U_{C0}\\ \end{matrix} \right]\\ \left[ \begin{matrix}{} \frac{dU_{C\alpha}}{dt}\\ \frac{dU_{C\beta}}{dt}\\ \frac{dU_{C0}}{dt} \end{matrix} \right] = \frac{1}{C} \left[ \begin{matrix}{} i_{\alpha}\\ i_{\beta}\\ i_0\\ \end{matrix} \right] - \frac{1}{C} \left[ \begin{matrix}{} i_{g\alpha}\\ i_{g\beta}\\ i_{g0}\\ \end{matrix} \right] \end{matrix} \right.\tag{6} ⎩⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎣⎡dtdiαdtdiβdtdi0⎦⎤=L1⎣⎡UαUβU0⎦⎤−LR⎣⎡iαiβi0⎦⎤−L1⎣⎡UCαUCβUC0⎦⎤⎣⎡dtdUCαdtdUCβdtdUC0⎦⎤=C1⎣⎡iαiβi0⎦⎤−C1⎣⎡igαigβig0⎦⎤(6)
dq Inverter equation in coordinate system
And the known α β \alpha\beta αβ-dq The positive and inverse transformation matrix is :
[ U d U q ] = T α β − d q [ U α U β ] = [ c o s φ s i n φ − s i n φ c o s φ ] [ U α U β ] \left[ \begin {matrix}{} U_d\\ U_q\\ \end{matrix} \right] = T_{\alpha\beta-dq} \left[ \begin {matrix} U_\alpha\\ U_\beta\\ \end{matrix} \right] = \left[ \begin {matrix} cos\varphi & sin\varphi \\ -sin\varphi & cos\varphi \end{matrix} \right] \left[ \begin {matrix} U_\alpha\\ U_\beta\\ \end{matrix} \right] [UdUq]=Tαβ−dq[UαUβ]=[cosφ−sinφsinφcosφ][UαUβ]
[ U α U β ] = T d q − α β U d U q = [ c o s φ − s i n φ s i n φ c o s φ ] [ U d U q ] \left[ \begin {matrix}{} U_\alpha\\ U_\beta\\ \end{matrix} \right] = T_{dq-\alpha\beta} \begin {matrix} U_d\\ U_q\\ \end{matrix} = \left[ \begin {matrix} cos\varphi & -sin\varphi \\ sin\varphi & cos\varphi \end{matrix} \right] \left[ \begin {matrix} U_d\\ U_q\\ \end{matrix} \right] [UαUβ]=Tdq−αβUdUq=[cosφsinφ−sinφcosφ][UdUq]
Put the above α β \alpha\beta αβ Remove the inverter equation in coordinates 0 Axis equation , And multiply it by the transformation matrix T α β − d q T_{\alpha\beta-dq} Tαβ−dq Available :
T α β − d q [ d i α d t d i β d t ] = 1 L T α β − d q [ U α U β ] − R L T α β − d q [ i α i β ] − 1 L T α β − d q [ U C α U C β ] T_{\alpha\beta-dq} \left[ \begin{matrix}{} \frac{di_{\alpha}}{dt}\\ \frac{di_{\beta}}{dt} \end{matrix} \right] = \frac{1}{L} T_{\alpha\beta-dq} \left[ \begin{matrix}{} U_{\alpha}\\ U_{\beta} \end{matrix} \right] - \frac{R}{L} T_{\alpha\beta-dq} \left[ \begin{matrix}{} i_{\alpha}\\ i_{\beta} \end{matrix} \right] - \frac{1}{L} T_{\alpha\beta-dq} \left[ \begin{matrix}{} U_{C\alpha}\\ U_{C\beta}\\ \end{matrix} \right]\\ Tαβ−dq[dtdiαdtdiβ]=L1Tαβ−dq[UαUβ]−LRTαβ−dq[iαiβ]−L1Tαβ−dq[UCαUCβ]
The same process as above , Need to find T α β − d q [ d i α d t d i β d t ] T_{\alpha\beta-dq} \left[ \begin{matrix}{} \frac{di_{\alpha}}{dt}\\ \frac{di_{\beta}}{dt}\end{matrix} \right] Tαβ−dq[dtdiαdtdiβ], here φ = ω t \varphi=\omega t φ=ωt , ( T α β − d q ) ′ (T_{\alpha\beta-dq})' (Tαβ−dq)′ No more for 0.
( T α β − d q ) ′ = [ − ω s i n φ ω c o s φ − ω c o s φ − ω s i n φ ] (T_{\alpha\beta-dq})' = \left[ \begin{matrix}{} -\omega sin \varphi & \omega cos \varphi\\ -\omega cos \varphi & -\omega sin \varphi \end{matrix} \right] (Tαβ−dq)′=[−ωsinφ−ωcosφωcosφ−ωsinφ]
T α β − d q [ d i α d t d i β d t ] = = [ d i d d t d i q d t ] − [ − ω s i n φ ω c o s φ − ω c o s φ − ω s i n φ ] [ i α i β ] = [ − ω s i n φ ω c o s φ − ω c o s φ − ω s i n φ ] ( T α β − d q ) − 1 [ i d i q ] = [ − ω s i n φ ω c o s φ − ω c o s φ − ω s i n φ ] ( T α β − d q ) − 1 [ i d i q ] = ω [ 0 1 − 1 0 ] [ i d i q ] T_{\alpha\beta-dq} \left[ \begin{matrix}{} \frac{di_{\alpha}}{dt}\\ \frac{di_{\beta}}{dt} \end{matrix} \right] == \left[ \begin{matrix}{} \frac{di_{d}}{dt}\\ \frac{di_{q}}{dt} \end{matrix} \right] - \left[ \begin{matrix}{} -\omega sin \varphi & \omega cos \varphi\\ -\omega cos \varphi & -\omega sin \varphi \end{matrix} \right] \left[ \begin{matrix}{} i_{\alpha}\\ i_{\beta} \end{matrix} \right] = \left[ \begin{matrix}{} -\omega sin \varphi & \omega cos \varphi\\ -\omega cos \varphi & -\omega sin \varphi \end{matrix} \right] (T_{\alpha\beta-dq})^{-1} \left[ \begin{matrix}{} i_{d}\\ i_{q} \end{matrix} \right]\\ = \left[ \begin{matrix}{} -\omega sin \varphi & \omega cos \varphi\\ -\omega cos \varphi & -\omega sin \varphi \end{matrix} \right] (T_{\alpha\beta-dq})^{-1} \left[ \begin{matrix}{} i_{d}\\ i_{q} \end{matrix} \right] = \omega \left[ \begin{matrix}{} 0 & 1 \\ -1 & 0 \end{matrix} \right] \left[ \begin{matrix}{} i_{d}\\ i_{q} \end{matrix} \right] Tαβ−dq[dtdiαdtdiβ]==[dtdiddtdiq]−[−ωsinφ−ωcosφωcosφ−ωsinφ][iαiβ]=[−ωsinφ−ωcosφωcosφ−ωsinφ](Tαβ−dq)−1[idiq]=[−ωsinφ−ωcosφωcosφ−ωsinφ](Tαβ−dq)−1[idiq]=ω[0−110][idiq]
Substituting into the system equation, we can get dq The inverter equation in the coordinate system is :
{ [ d i d d t d i q d t ] = 1 L [ U d U q ] − R L [ i d i q ] − 1 L [ U C d U C q ] + ω [ i q − i d ] [ d U C d d t d U C q d t ] = 1 C [ i d i q ] − 1 C [ i g d i g q ] + ω [ U C q − U C d ] (7) \left \{ \begin{matrix}{} \left[ \begin{matrix}{} \frac{di_{d}}{dt}\\ \frac{di_{q}}{dt}\\ \end{matrix} \right] = \frac{1}{L} \left[ \begin{matrix}{} U_{d}\\ U_{q}\\ \end{matrix} \right] - \frac{R}{L} \left[ \begin{matrix}{} i_{d}\\ i_{q}\\ \end{matrix} \right] - \frac{1}{L} \left[ \begin{matrix}{} U_{Cd}\\ U_{Cq}\\ \end{matrix} \right] + \omega \left[ \begin{matrix}{} i_{q}\\ -i_{d}\\ \end{matrix} \right] \\ \left[ \begin{matrix}{} \frac{dU_{Cd}}{dt}\\ \frac{dU_{Cq}}{dt}\\ \end{matrix} \right] = \frac{1}{C} \left[ \begin{matrix}{} i_{d}\\ i_{q}\\ \end{matrix} \right] - \frac{1}{C} \left[ \begin{matrix}{} i_{gd}\\ i_{gq}\\ \end{matrix} \right] +\omega \left[ \begin{matrix}{} U_{Cq}\\ -U_{Cd}\\ \end{matrix} \right] \\ \end{matrix} \right.\tag{7} ⎩⎪⎪⎨⎪⎪⎧[dtdiddtdiq]=L1[UdUq]−LR[idiq]−L1[UCdUCq]+ω[iq−id][dtdUCddtdUCq]=C1[idiq]−C1[igdigq]+ω[UCq−UCd](7)
At this point, you can find the system d The existence of the axis equation is related to q Phenomenon of shaft coupling , Therefore, it is necessary to control the system accurately dq Shaft decoupling .
fitting (7) Laplace transform can get :
{ i d = i g d + s C U C d − ω C U C q i q = i g q + s C U C q + ω C U C d U d = ( s L + R ) i d + U C d − ω L i q U q = ( s L + R ) i q + U C q + ω L i d (8) \left\{ \begin{matrix}{} i_d = i_{gd}+sCU_{Cd}-\omega CU_{Cq}\\ i_q = i_{gq}+sCU_{Cq}+\omega CU_{Cd}\\ U_d = (sL+R)i_{d}+U_{Cd}-\omega Li_{q}\\ U_q = (sL+R)i_{q}+U_{Cq}+\omega Li_{d}\\ \end{matrix} \right.\tag{8} ⎩⎪⎪⎨⎪⎪⎧id=igd+sCUCd−ωCUCqiq=igq+sCUCq+ωCUCdUd=(sL+R)id+UCd−ωLiqUq=(sL+R)iq+UCq+ωLid(8)
Usage (8) The following block diagram can be drawn .

According to the inverter body model, double PI Control schematic diagram , Because by Combine after decoupling PI controller Precise control can be achieved .

Grid connected inverter PI Controller constant value tracking
about PI controller
G ( s ) = K P ( 1 + K i s ) = K P s + K P K i s G ( j ω ) = K P j ω + K P K i j ω G_{(s)}=K_P(1+\frac{K_i}{s})=\frac{K_Ps+K_PK_i}{s}\\ G(j\omega) = \frac{K_Pj\omega+K_PK_i}{j\omega} \\ G(s)=KP(1+sKi)=sKPs+KPKiG(jω)=jωKPjω+KPKi
therefore :
G ( j 0 ) = K P j 0 + K P K i j 0 = ∞ G(j0) = \frac{K_Pj0+K_PK_i}{j0} = \infty \\ G(j0)=j0KPj0+KPKi=∞
At this time, the closed-loop transmittal is :
A = G ( j 0 ) 1 + G ( j 0 ) = 1 A=\frac{G_{(j0)} }{1+G_{(j0)}} = 1 A=1+G(j0)G(j0)=1
therefore PI The controller pair frequency is 0 The signal of ( DC signal ) Can achieve Tracking without static error ! Therefore, in the above process, the inverter control model needs to be transformed to dq Axis , because dq Transformation is based on PLL The output voltage angle is transformed , So the three-phase current is dq In coordinate system (d The shaft component is the current amplitude ,q The axis component is zero ). Decoupling is to eliminate other shaft pairs PI The impact of control .
Simulation results
SPWM Modulation signal :
Output line voltage ( Before filter ):
Load side phase voltage (0.1s Grid connection ,0.8s Given power step ):
Output power :
simulation model : Model links
边栏推荐
- 微服务实战|原生态实现服务的发现与调用
- kinect dk 获取CV::Mat格式的彩色RGB图像(openpose中使用)
- What are the differences between TP5 and laravel
- 大学生四六级作文模板(自创版,成功跨过六级)
- How to use PHP spoole to implement millisecond scheduled tasks
- FragmentTabHost实现房贷计算器界面
- Failed to configure a DataSource: ‘url‘ attribute is not specified and no embedd
- Oracle delete tablespace and user
- 在SQL注入中,为什么union联合查询,id必须等于0
- Amq6126 problem solving ideas
猜你喜欢

Number structure (C language -- code with comments) -- Chapter 2, linear table (updated version)

YOLO物体识别,生成数据用到的工具

JDBC review

微服务实战|原生态实现服务的发现与调用

分享一篇博客(水一篇博客)

View the port of the application published by was

Learn combinelatest through a practical example

Hystrix implements request consolidation

Watermelon book -- Chapter 5 neural network

Solutions to Chinese garbled code in CMD window
随机推荐
Matplotlib swordsman line - first acquaintance with Matplotlib
Ora-12514 problem solving method
Safety production early warning system software - Download safety production app software
How to choose between efficiency and correctness of these three implementation methods of distributed locks?
C语言之数据插入
Difference between redis serialization genericjackson2jsonredisserializer and jackson2jsonredisserializer
道阻且长,行则将至
Enterprise level SaaS CRM implementation
idea查看字节码配置
From concept to method, the statistical learning method -- Chapter 3, k-nearest neighbor method
Pool de connexion redis personnalisé
Read Day5 30 minutes before going to bed every day_ All key values in the map, how to obtain all value values
QT信号槽总结-connect函数错误用法
定时线程池实现请求合并
How to use pyqt5 to make a sensitive word detection tool
Watermelon book -- Chapter 6 Support vector machine (SVM)
How to install PHP in CentOS
告别996,IDEA中必装插件有哪些?
每天睡前30分钟阅读Day6_Day6_Date_Calendar_LocalDate_TimeStamp_LocalTime
Microservice practice | fuse hytrix initial experience