当前位置:网站首页>Least squares system identification class II: recursive least squares
Least squares system identification class II: recursive least squares
2022-06-26 16:16:00 【RuiH. AI】
Least squares system identification class medium-length : Recursive least squares
Preface
This paper records the principle of recursive least squares in the course of system identification .
Least squares estimate
The following system identification model :
{ y ( 1 ) = φ T ( 1 ) θ + v ( 1 ) y ( 2 ) = φ T ( 2 ) θ + v ( 2 ) . . . y ( t ) = φ T ( t ) θ + v ( t ) set up : Y t = [ y ( 1 ) y ( 2 ) . . . y ( t ) ] T H t = [ φ ( 1 ) φ ( 2 ) . . . φ ( t ) ] T V t = [ v ( 1 ) v ( 2 ) . . . v ( n ) ] T Yes : Y t = H t θ + V t \left \{ \begin{aligned} y(1)&=\varphi^T(1)\theta+v(1) \\ y(2)&=\varphi^T(2)\theta+v(2) \\ &... \\ y(t)&=\varphi^T(t)\theta+v(t) \end{aligned} \right . \\ \quad \\ \begin{aligned} set up : Y_t&=[y(1)\quad y(2)\quad ... \quad y(t)]^T \\ H_t&=[\varphi(1) \quad \varphi(2) \quad ... \quad \varphi(t)]^T \\ V_t&=[v(1) \quad v(2) \quad ... \quad v(n)]^T \end{aligned} \\ \quad \\ Yes : Y_t=H_t\theta +V_t ⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧y(1)y(2)y(t)=φT(1)θ+v(1)=φT(2)θ+v(2)...=φT(t)θ+v(t) set up :YtHtVt=[y(1)y(2)...y(t)]T=[φ(1)φ(2)...φ(t)]T=[v(1)v(2)...v(n)]T Yes :Yt=Htθ+Vt
The least square estimation of parameters can be expressed as :
θ ^ L S = ( H t T H t ) − 1 H t T Y t \hat\theta_{LS}=(H_t^TH_t)^{-1}H_t^TY_t θ^LS=(HtTHt)−1HtTYt
The above method updates the input and output data at each new time , Must be re estimated , The computational load is heavy .
Recursive least squares estimation
principle
Recursive least square estimation uses incremental method , The following is derived :
P − 1 ( t ) = H t T H t = ∑ i = 1 t φ ( i ) φ T ( i ) = ∑ i = 1 t − 1 φ ( i ) φ T ( i ) + φ ( t ) φ T ( t ) = P − 1 ( t − 1 ) + φ ( t ) φ T ( t ) θ ^ ( t ) = ( H t T H t ) − 1 H t T Y t = P ( t ) H t T Y t = P ( t ) [ H t − 1 T φ ( t ) ] [ Y t − 1 T y ( t ) ] T = P ( t ) H t − 1 T Y t − 1 T + P ( t ) φ ( t ) y ( t ) = P ( t ) P − 1 ( t − 1 ) P ( t − 1 ) H t − 1 T Y t − 1 T + P ( t ) φ ( t ) y ( t ) = P ( t ) P − 1 ( t − 1 ) θ ^ ( t − 1 ) + P ( t ) φ ( t ) y ( t ) = P ( t ) [ P − 1 ( t ) − φ ( t ) φ T ( t ) ] θ ^ ( t − 1 ) + P ( t ) φ ( t ) y ( t ) = θ ^ ( t − 1 ) − P ( t ) φ ( t ) φ T ( t ) θ ^ ( t − 1 ) + P ( t ) φ ( t ) y ( t ) = θ ^ ( t − 1 ) + P ( t ) φ ( t ) [ y ( t ) − φ T ( t ) θ ^ ( t − 1 ) ] lead The reason is : Moment front A , B , C , if ( I + C A − 1 B ) And A all can The inverse , be : ( A + B C ) − 1 = A − 1 − A − 1 B ( I + C A − 1 B ) − 1 C A − 1 P − 1 ( t ) = P − 1 ( t − 1 ) + φ ( t ) φ T ( t ) hold after Noodles Of type Son take The inverse , root According to the lead The reason is Yes : P ( t ) = P ( t − 1 ) − P ( t − 1 ) φ ( t ) φ T ( t ) P ( t − 1 ) 1 + φ T ( t ) P ( t − 1 ) φ ( t ) P ( t ) φ ( t ) = P ( t − 1 ) φ ( t ) 1 + φ T ( t ) P ( t − 1 ) φ ( t ) L ( t ) = P ( t ) φ ( t ) P^{-1}(t)=H_t^TH_t=\sum_{i=1}^t \varphi(i)\varphi^T(i)=\sum_{i=1}^{t-1} \varphi(i)\varphi^T(i) + \varphi(t)\varphi^T(t) = P^{-1}(t-1)+ \varphi(t)\varphi^T(t) \\ \quad \\ \begin{aligned} \hat\theta(t)&=(H_t^TH_t)^{-1}H_t^TY_t \\ &=P(t)H_t^TY_t \\ &=P(t)\begin{bmatrix} H_{t-1}^T & \varphi(t) \end{bmatrix} \begin{bmatrix} Y_{t-1}^T & y(t) \end{bmatrix}^T \\ &=P(t)H_{t-1}^TY_{t-1}^T + P(t)\varphi(t)y(t) \\ &=P(t)P^{-1}(t-1)P(t-1)H_{t-1}^TY_{t-1}^T + P(t)\varphi(t)y(t) \\ &=P(t)P^{-1}(t-1)\hat \theta(t-1)+P(t)\varphi(t)y(t) \\ &=P(t)[P^{-1}(t)- \varphi(t)\varphi^T(t) ]\hat\theta(t-1)+P(t)\varphi(t)y(t) \\ &=\hat\theta(t-1)-P(t)\varphi(t)\varphi^T(t)\hat\theta(t-1)+P(t)\varphi(t)y(t) \\ &=\hat\theta(t-1)+P(t)\varphi(t)[y(t)-\varphi^T(t)\hat\theta(t-1)] \end{aligned} \\ \quad \\ lemma : matrix A,B,C, if (I+CA^{-1}B) And A It's reversible , be :\\ (A+BC)^{-1}=A^{-1}-A^{-1}B(I+CA^{-1}B)^{-1}CA^{-1} \\ \quad \\ P^{-1}(t)= P^{-1}(t-1)+ \varphi(t)\varphi^T(t) \\ \quad \\ Take the inverse of the following formula , According to lemma, there are :\\ P(t)=P(t-1)-\frac{P(t-1)\varphi(t)\varphi^T(t)P(t-1)}{1+\varphi^T(t)P(t-1)\varphi(t)} \\ \quad \\ P(t)\varphi(t)= \frac{P(t-1)\varphi(t)}{1+\varphi^T(t)P(t-1)\varphi(t)} \\ \quad \\ L(t)=P(t)\varphi(t) P−1(t)=HtTHt=i=1∑tφ(i)φT(i)=i=1∑t−1φ(i)φT(i)+φ(t)φT(t)=P−1(t−1)+φ(t)φT(t)θ^(t)=(HtTHt)−1HtTYt=P(t)HtTYt=P(t)[Ht−1Tφ(t)][Yt−1Ty(t)]T=P(t)Ht−1TYt−1T+P(t)φ(t)y(t)=P(t)P−1(t−1)P(t−1)Ht−1TYt−1T+P(t)φ(t)y(t)=P(t)P−1(t−1)θ^(t−1)+P(t)φ(t)y(t)=P(t)[P−1(t)−φ(t)φT(t)]θ^(t−1)+P(t)φ(t)y(t)=θ^(t−1)−P(t)φ(t)φT(t)θ^(t−1)+P(t)φ(t)y(t)=θ^(t−1)+P(t)φ(t)[y(t)−φT(t)θ^(t−1)] lead The reason is : Moment front A,B,C, if (I+CA−1B) And A all can The inverse , be :(A+BC)−1=A−1−A−1B(I+CA−1B)−1CA−1P−1(t)=P−1(t−1)+φ(t)φT(t) hold after Noodles Of type Son take The inverse , root According to the lead The reason is Yes :P(t)=P(t−1)−1+φT(t)P(t−1)φ(t)P(t−1)φ(t)φT(t)P(t−1)P(t)φ(t)=1+φT(t)P(t−1)φ(t)P(t−1)φ(t)L(t)=P(t)φ(t)
therefore , The recursive least squares of the system parameters can be expressed as :
θ ^ ( t ) = θ ^ ( t − 1 ) + L ( t ) [ y ( t ) − φ T ( t ) θ ^ ( t − 1 ) ] ] L ( t ) = P ( t − 1 ) φ ( t ) 1 + φ T ( t ) P ( t − 1 ) φ ( t ) P ( t ) = [ I − L ( t ) φ T ( t ) ] P ( t − 1 ) , P ( 0 ) = p 0 I , p 0 = inf φ ( t ) = [ . . . ] \hat\theta(t)=\hat\theta(t-1)+L(t)[y(t)-\varphi^T(t)\hat\theta(t-1)]] \\ \quad \\ L(t)=\frac{P(t-1)\varphi(t)}{1+\varphi^T(t)P(t-1)\varphi(t)} \\ \quad \\ P(t)=[I-L(t)\varphi^T(t)]P(t-1), P(0)=p_0I, p_0=\inf \\ \quad \\ \varphi(t)=[...] θ^(t)=θ^(t−1)+L(t)[y(t)−φT(t)θ^(t−1)]]L(t)=1+φT(t)P(t−1)φ(t)P(t−1)φ(t)P(t)=[I−L(t)φT(t)]P(t−1),P(0)=p0I,p0=infφ(t)=[...]
New interest , residual
New interest e ( t ) = y ( t ) − φ T ( t ) θ ^ ( t − 1 ) e(t)=y(t)-\varphi^T(t)\hat\theta(t-1) e(t)=y(t)−φT(t)θ^(t−1)
residual ε ( t ) = y ( t ) − φ T ( t ) θ ^ ( t ) \varepsilon(t)=y(t)-\varphi^T(t)\hat\theta(t) ε(t)=y(t)−φT(t)θ^(t)
Data saturation
The phenomenon
When the input-output time series is long enough , The new input and output do not contribute to the result of recursive least squares estimation , It is called data saturation .
reason
P ( t ) = [ P − 1 ( t − 1 ) + φ ( t ) φ T ( t ) ] − 1 = > P ( t ) ≤ P ( t − 1 ) ( α I + 1 / p 0 ) t ≤ P − 1 ( t ) = P − 1 ( 0 ) + ∑ i = 1 t φ ( i ) φ T ( i ) ≤ ( β I + 1 / p 0 ) t lim t − > inf P − 1 ( t ) = 0 P(t)=[P^{-1}(t-1)+\varphi(t)\varphi^T(t)]^{-1} => P(t)\le P(t-1) \\ (\alpha I+1/p_0)t\le P^{-1}(t) = P^{-1}(0)+ \sum_{i=1}^t\varphi(i)\varphi^T(i) \le (\beta I+1/p_0)t \\ \lim_{t->\inf}P^{-1}(t) = 0 P(t)=[P−1(t−1)+φ(t)φT(t)]−1=>P(t)≤P(t−1)(αI+1/p0)t≤P−1(t)=P−1(0)+i=1∑tφ(i)φT(i)≤(βI+1/p0)tt−>inflimP−1(t)=0
resolvent : Recursive least squares with forgetting factor
θ ^ ( t ) = θ ^ ( t − 1 ) + L ( t ) [ y ( t ) − φ T ( t ) θ ^ ( t − 1 ) ] ] L ( t ) = P ( t − 1 ) φ ( t ) λ + φ T ( t ) P ( t − 1 ) φ ( t ) P ( t ) = 1 λ [ I − L ( t ) φ T ( t ) ] P ( t − 1 ) , P ( 0 ) = p 0 I , p 0 = inf φ ( t ) = [ . . . ] \hat\theta(t)=\hat\theta(t-1)+L(t)[y(t)-\varphi^T(t)\hat\theta(t-1)]] \\ \quad \\ L(t)=\frac{P(t-1)\varphi(t)}{\lambda+\varphi^T(t)P(t-1)\varphi(t)} \\ \quad \\ P(t)=\frac{1}{\lambda}[I-L(t)\varphi^T(t)]P(t-1), P(0)=p_0I, p_0=\inf \\ \quad \\ \varphi(t)=[...] θ^(t)=θ^(t−1)+L(t)[y(t)−φT(t)θ^(t−1)]]L(t)=λ+φT(t)P(t−1)φ(t)P(t−1)φ(t)P(t)=λ1[I−L(t)φT(t)]P(t−1),P(0)=p0I,p0=infφ(t)=[...]
Postscript
This paper records the derivation of recursive least squares , Data saturation and its solution . The next chapter will record the least squares , φ T ( t ) \varphi^T(t) φT(t) How to get .
边栏推荐
- Lifeifei's team applied vit to the robot, increased the maximum speed of planning reasoning by 512 times, and also cued hekaiming's Mae
- 100+数据科学面试问题和答案总结 - 基础知识和数据分析
- R语言使用cor函数计算相关性矩阵进行相关性分析,使用corrgram包可视化相关性矩阵、行和列使用主成分分析重新排序、下三角形中使用平滑的拟合线和置信椭圆,上三角形中使用散点图、对角线最小值和最大值
- "C language" question set of ⑩
- Kept to implement redis autofailover (redisha) 1
- 心情不好,我就这样写代码
- 若依如何实现接口限流?
- Hyperf框架使用阿里云OSS上传失败
- 牛客编程题--必刷101之动态规划(一文彻底了解动态规划)
- 理想路径问题
猜你喜欢

NFT合约基础知识讲解

2 三种建模方式

Tweenmax+svg switch color animation scene

1 张量的简单使用

TCP拥塞控制详解 | 1. 概述

Canvas three dot flashing animation

pybullet机器人仿真环境搭建 5.机器人位姿可视化

SAP OData development tutorial - from getting started to improving (including segw, rap and CDP)

用Attention和微调BERT进行自然语言推断-PyTorch

C# 读写文件从用户态切到内核态,到底是个什么流程?
随机推荐
9 Tensorboard的使用
2 three modeling methods
补齐短板-开源IM项目OpenIM关于初始化/登录/好友接口文档介绍
心情不好,我就这样写代码
手写数字体识别,用保存的模型跑自己的图片
首例猪心移植细节全面披露:患者体内发现人类疱疹病毒,死后心脏重量翻倍,心肌细胞纤维化丨团队最新论文...
【力扣刷题】单调栈:84. 柱状图中最大的矩形
Big talk Domain Driven Design -- presentation layer and others
NFT transaction principle analysis (2)
Stepn novice introduction and advanced
Canvas three dot flashing animation
R语言广义线性模型函数GLM、glm函数构建逻辑回归模型(Logistic regression)、分析模型是否过离散(Overdispersion)、使用残差偏差与二项式模型中的剩余自由度的比率评估
redis的二进制数组命令
How to implement interface current limiting?
Practice of federal learning in Tencent micro vision advertising
Acid of redis
Redis migration (recommended operation process) 1
Beijing University and Tencent jointly build angel4.0, and the self-developed in-depth learning framework "River map" is integrated into the ecology
8 自定义评估函数
(1) Keras handwritten numeral recognition and recognition of self written numbers