当前位置:网站首页>Newton's theorem and related corollaries
Newton's theorem and related corollaries
2022-08-02 01:33:00 【patrickpdx】
摘自 《高中数学竞赛解题策略·几何分册》Newton's theorem, See full text illustrations link
Newton's theorem. 四边形 A B C D ABCD ABCD There is an inscribed circle, cut separately A B AB AB, B C BC BC, C D CD CD, D A DA DA 于点 E E E, F F F, G G G, H H H. Then the intersection of the diagonals of the quadrilateral and the line connecting the tangent points of the two opposite sides intersect at the same point.
证明: We first prove the case of convex quadrilaterals.
引理. E G EG EG, F H FH FH, B D BD BD 交于一点, 设该点为 M M M, 且 B M / D M = B E / H D BM/DM=BE/HD BM/DM=BE/HD.
分别设 E G EG EG, F H FH FH 交 B D BD BD 于点 M 1 M_{1} M1, M 2 M_{2} M2. B M 1 D M 1 = S △ B E M 1 S △ D G M 1 ⋅ G M 1 E M 1 \frac{BM_{1}}{DM_{1}}=\frac{S_{\triangle BEM_{1}}}{S_{\triangle DGM_{1}}}\cdot \frac{GM_{1}}{EM_{1}} DM1BM1=S△DGM1S△BEM1⋅EM1GM1. 由于 ∠ A E G = ∠ D G E \angle AEG=\angle DGE ∠AEG=∠DGE, S △ B E M 1 S △ D G M 1 = E M 1 ⋅ B E G M 1 ⋅ D G \frac{S_{\triangle BEM_{1}}}{S_{\triangle DGM_{1}}}=\frac{EM_{1}\cdot BE}{GM_{1}\cdot DG} S△DGM1S△BEM1=GM1⋅DGEM1⋅BE, 故 B M 1 D M 1 = B E E G = B E H D \frac{BM_{1}}{DM_{1}}=\frac{BE}{EG}=\frac{BE}{HD} DM1BM1=EGBE=HDBE. 同理可证: B M 2 D M 2 = B E H D \frac{BM_{2}}{DM_{2}}=\frac{BE}{HD} DM2BM2=HDBE. 证毕.
根据引理, 可以推得 E G EG EG, F H FH FH, A C AC AC Also hand in one point, 命题得证.
When quadrilateral A B C D ABCD ABCD When it is a concave quadrilateral, The proof is exactly the same.
When quadrilateral A B C D ABCD ABCD When it is a folded quadrilateral, The proof is exactly the same.
性质1. The midpoints of the two diagonals of the inscribed quadrilateral are collinear with the center of the inscribed circle.
证明:
如图, 证明 S △ M I D = S △ M I B S_{\triangle MID}=S_{\triangle MIB} S△MID=S△MIB
设 S △ A I D = S 1 S_{\triangle AID}=S_{1} S△AID=S1, S △ C I D = S 2 S_{\triangle CID}=S_{2} S△CID=S2, S △ B I C = S 3 S_{\triangle BIC}=S_{3} S△BIC=S3, S △ A I B = S 4 S_{\triangle AIB}=S_{4} S△AIB=S4
S △ M I D = S 2 − 1 2 S △ A C D − 1 2 S △ I A C = S 2 − 1 2 S △ A C D − 1 2 ( S 1 + S 2 − S △ A C D ) = 1 2 ( S 2 − S 1 ) S_{\triangle MID}=S_{2}-\frac{1}{2}S_{\triangle ACD}-\frac{1}{2}S_{\triangle IAC}=S_{2}-\frac{1}{2}S_{\triangle ACD}-\frac{1}{2}(S_{1}+S_{2}-S_{\triangle ACD})=\frac{1}{2}(S_{2}-S_{1}) S△MID=S2−21S△ACD−21S△IAC=S2−21S△ACD−21(S1+S2−S△ACD)=21(S2−S1)
同理 S △ M I B = 1 2 ( S 3 − S 4 ) S_{\triangle MIB}=\frac{1}{2}(S_{3}-S_{4}) S△MIB=21(S3−S4)
易证, ( S 2 − S 1 ) = 1 2 r ( C D − A C ) (S_{2}-S_{1})=\frac{1}{2}r(CD-AC) (S2−S1)=21r(CD−AC), ( S 3 − S 4 ) = 1 2 r ( B C − A B ) (S_{3}-S_{4})=\frac{1}{2}r(BC-AB) (S3−S4)=21r(BC−AB), 显然相等, 证毕.
证明参考 link
边栏推荐
- 电商库存系统的防超卖和高并发扣减方案
- go mode tidy出现报错go warning “all“ matched no packages
- Kubernetes — 网络流量模型
- Detailed explanation of fastjson
- 3个月测试员自述:4个影响我职业生涯的重要技能
- Flink_CDC construction and simple use
- datagrip 报错 “The specified database userpassword combination is rejected...”的解决方法
- 管理基础知识20
- TKU记一次单点QPS优化(顺祝ITEYE终于回来了)
- Mapped Statements collection does not contain value for的解决方法
猜你喜欢
Kubernetes — 核心资源对象 — 存储
dbeaver连接MySQL数据库及错误Connection refusedconnect处理
Entry name ‘org/apache/commons/codec/language/bm/gen_approx_greeklatin.txt’ collided
C语言函数详解(1)【库函数与自定义函数】
安全(2)
S/4中究竟有多少个模块,你对这些模块了解多少
Pytorch seq2seq model architecture to achieve English translation tasks
MInIO入门-03 秒传+大文件分片上传
go版本升级
Flex layout in detail
随机推荐
C语言函数详解(1)【库函数与自定义函数】
Oracle data to mysql FlinkSQL CDC to achieve synchronization
期货开户如何确定期货公司正规性?
Kubernetes — Flannel
JS中对事件代理的理解及其应用场景
设备树学习
YGG 公会发展计划第 1 季总结
网络请求技术--跨域
管理基础知识15
管理基础知识18
ECMAScript 2022 正式发布,有你了解过的吗?
期货公司开户实力经纪业务的规模
傅立叶变换相关公式
当关注「互联网+」模式的时候,通常仅仅只是在关注「互联网+」模式本身
22.卷积神经网络实战-Lenet5
dayjs时间处理库的基本使用
有效进行自动化测试,这几个软件测试工具一定要收藏好!!!
60种特征工程操作:使用自定义聚合函数【收藏】
管理基础知识20
Debian侵犯Rust商标,妥协改名还是会得到豁免?