当前位置:网站首页>快速抽取resnet_v2_152中间的特征层
快速抽取resnet_v2_152中间的特征层
2022-08-01 17:01:00 【全部梭哈迟早暴富】
一、背景
用resnet提取对象特征时,往往中间层也会包含一些细节信息,所以有时候会将中间层的特征抽取出来,本文将介绍如何抽取中间层的特征。
二、准备代码
import tensorflow as tf
from tensorflow.contrib import slim
from tensorflow.contrib.slim.nets import resnet_v2
def resnet_arg_scope(self, is_training=True, # 训练标记
weight_decay=0.0001, # 权重衰减速率
batch_norm_decay=0.997, # BN的衰减速率
batch_norm_epsilon=1e-5, # BN的epsilon默认1e-5
batch_norm_scale=True): # BN的scale默认值
batch_norm_params = { # 定义batch normalization(标准化)的参数字典
'is_training': is_training,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': tf.GraphKeys.UPDATE_OPS,
}
with slim.arg_scope( # 通过slim.arg_scope将[slim.conv2d]的几个默认参数设置好
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay), # 权重正则器设置为L2正则
weights_initializer=slim.variance_scaling_initializer(), # 权重初始化器
activation_fn=tf.nn.relu, # 激活函数
normalizer_fn=slim.batch_norm, # 标准化器设置为BN
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc: # ResNet原论文是VALID模式,SAME模式可让特征对齐更简单
return arg_sc
def _image_extract_resnet(image):
with slim.arg_scope(resnet_arg_scope(is_training=True)):
net, end_points = resnet_v2.resnet_v2_152(image, reuse=tf.AUTO_REUSE)以上代码是调用resnet152的过程,抽取特征则只涉及到end_points的信息。
三、resnet-152的所有中间层名称及其大小
直接对endpoint进行输出,然后整理一下就可以得到所有中间层的信息。整理的结果如下:
('resnet_v2_152/conv1', shape=(1, 112, 112, 64)),
('resnet_v2_152/block1/unit_1/bottleneck_v2/shortcut', shape=(1, 56, 56, 256)),
('resnet_v2_152/block1/unit_1/bottleneck_v2/conv1', shape=(1, 56, 56, 64)),
('resnet_v2_152/block1/unit_1/bottleneck_v2/conv2', shape=(1, 56, 56, 64)),
('resnet_v2_152/block1/unit_1/bottleneck_v2/conv3', shape=(1, 56, 56, 256)),
('resnet_v2_152/block1/unit_1/bottleneck_v2', shape=(1, 56, 56, 256)),
('resnet_v2_152/block1/unit_2/bottleneck_v2/conv1', shape=(1, 56, 56, 64)),
('resnet_v2_152/block1/unit_2/bottleneck_v2/conv2', shape=(1, 56, 56, 64)),
('resnet_v2_152/block1/unit_2/bottleneck_v2/conv3', shape=(1, 56, 56, 256)),
('resnet_v2_152/block1/unit_2/bottleneck_v2', shape=(1, 56, 56, 256)),
('resnet_v2_152/block1/unit_3/bottleneck_v2/conv1', shape=(1, 56, 56, 64)),
('resnet_v2_152/block1/unit_3/bottleneck_v2/conv2', shape=(1, 28, 28, 64)),
('resnet_v2_152/block1/unit_3/bottleneck_v2/conv3', shape=(1, 28, 28, 256)),
('resnet_v2_152/block1/unit_3/bottleneck_v2', shape=(1, 28, 28, 256)),
('resnet_v2_152/block1', shape=(1, 28, 28, 256)),
('resnet_v2_152/block2/unit_1/bottleneck_v2/shortcut', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_1/bottleneck_v2/conv1', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_1/bottleneck_v2/conv2', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_1/bottleneck_v2/conv3', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_1/bottleneck_v2', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_2/bottleneck_v2/conv1', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_2/bottleneck_v2/conv2', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_2/bottleneck_v2/conv3', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_2/bottleneck_v2', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_3/bottleneck_v2/conv1', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_3/bottleneck_v2/conv2', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_3/bottleneck_v2/conv3', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_3/bottleneck_v2', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_4/bottleneck_v2/conv1', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_4/bottleneck_v2/conv2', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_4/bottleneck_v2/conv3', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_4/bottleneck_v2', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_5/bottleneck_v2/conv1', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_5/bottleneck_v2/conv2', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_5/bottleneck_v2/conv3', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_5/bottleneck_v2', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_6/bottleneck_v2/conv1', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_6/bottleneck_v2/conv2', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_6/bottleneck_v2/conv3', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_6/bottleneck_v2', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_7/bottleneck_v2/conv1', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_7/bottleneck_v2/conv2', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_7/bottleneck_v2/conv3', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_7/bottleneck_v2', shape=(1, 28, 28, 512)),
('resnet_v2_152/block2/unit_8/bottleneck_v2/conv1', shape=(1, 28, 28, 128)),
('resnet_v2_152/block2/unit_8/bottleneck_v2/conv2', shape=(1, 14, 14, 128)),
('resnet_v2_152/block2/unit_8/bottleneck_v2/conv3', shape=(1, 14, 14, 512)),
('resnet_v2_152/block2/unit_8/bottleneck_v2', shape=(1, 14, 14, 512)),
('resnet_v2_152/block2', shape=(1, 14, 14, 512)),
('resnet_v2_152/block3/unit_1/bottleneck_v2/shortcut', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_1/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_1/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_1/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_1/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_2/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_2/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_2/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_2/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_3/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_3/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_3/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_3/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_4/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_4/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_4/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_4/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_5/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_5/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_5/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_5/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_6/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_6/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_6/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_6/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_7/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_7/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_7/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_7/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_8/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_8/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_8/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_8/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_9/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_9/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_9/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_9/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_10/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_10/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_10/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_10/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_11/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_11/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_11/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_11/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_12/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_12/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_12/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_12/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_13/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_13/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_13/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_13/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_14/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_14/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_14/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_14/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_15/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_15/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_15/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_15/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_16/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_16/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_16/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_16/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_17/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_17/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_17/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_17/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_18/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_18/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_18/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_18/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_19/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_19/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_19/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_19/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_20/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_20/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_20/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_20/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_21/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_21/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_21/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_21/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_22/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_22/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_22/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_22/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_23/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_23/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_23/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_23/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_24/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_24/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_24/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_24/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_25/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_25/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_25/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_25/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_26/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_26/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_26/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_26/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_27/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_27/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_27/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_27/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_28/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_28/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_28/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_28/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_29/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_29/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_29/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_29/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_30/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_30/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_30/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_30/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_31/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_31/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_31/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_31/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_32/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_32/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_32/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_32/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_33/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_33/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_33/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_33/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_34/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_34/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_34/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_34/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_35/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_35/bottleneck_v2/conv2', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_35/bottleneck_v2/conv3', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_35/bottleneck_v2', shape=(1, 14, 14, 1024)),
('resnet_v2_152/block3/unit_36/bottleneck_v2/conv1', shape=(1, 14, 14, 256)),
('resnet_v2_152/block3/unit_36/bottleneck_v2/conv2', shape=(1, 7, 7, 256)),
('resnet_v2_152/block3/unit_36/bottleneck_v2/conv3', shape=(1, 7, 7, 1024)),
('resnet_v2_152/block3/unit_36/bottleneck_v2', shape=(1, 7, 7, 1024)),
('resnet_v2_152/block3', shape=(1, 7, 7, 1024)),
('resnet_v2_152/block4/unit_1/bottleneck_v2/shortcut', shape=(1, 7, 7, 2048)),
('resnet_v2_152/block4/unit_1/bottleneck_v2/conv1', shape=(1, 7, 7, 512)),
('resnet_v2_152/block4/unit_1/bottleneck_v2/conv2', shape=(1, 7, 7, 512)),
('resnet_v2_152/block4/unit_1/bottleneck_v2/conv3', shape=(1, 7, 7, 2048)),
('resnet_v2_152/block4/unit_1/bottleneck_v2', shape=(1, 7, 7, 2048)),
('resnet_v2_152/block4/unit_2/bottleneck_v2/conv1', shape=(1, 7, 7, 512)),
('resnet_v2_152/block4/unit_2/bottleneck_v2/conv2', shape=(1, 7, 7, 512)),
('resnet_v2_152/block4/unit_2/bottleneck_v2/conv3', shape=(1, 7, 7, 2048)),
('resnet_v2_152/block4/unit_2/bottleneck_v2', shape=(1, 7, 7, 2048)),
('resnet_v2_152/block4/unit_3/bottleneck_v2/conv1', shape=(1, 7, 7, 512)),
('resnet_v2_152/block4/unit_3/bottleneck_v2/conv2', shape=(1, 7, 7, 512)),
('resnet_v2_152/block4/unit_3/bottleneck_v2/conv3', shape=(1, 7, 7, 2048)),
('resnet_v2_152/block4/unit_3/bottleneck_v2', shape=(1, 7, 7, 2048)),
('resnet_v2_152/block4', shape=(1, 7, 7, 2048))])
如果想要调用中间的某一层可以如下设置:
def _image_extract_resnet(self, image, label, driven=False):
# 图像特征处理模块
with slim.arg_scope(self.resnet_arg_scope(is_training=True)):
net, end_points = resnet_v2.resnet_v2_152(image, reuse=tf.AUTO_REUSE)
# 想要别的层的话替换[]中的内容就可以了
feature = end_points['resnet_v2_152/conv1']
return net, feature 边栏推荐
- 软件测试谈薪技巧:同为测试人员,为什么有人5K,有人 20K?
- 好家伙,公司服务器直接热崩掉了!
- Description of common operations and help projects about DevExpress in C#
- 2022年深圳市促进大健康产业集群高质量发展的若干措施
- PAT 甲级 A1003 Emergency
- 【硬核拆解】50块2个的2022年夏季款智能节电器到底能不能省电?
- Isometric graph neural networks shine in drug discovery
- 工业制造行业的低代码开发平台思维架构图
- 吴恩达机器学习课后习题——kmeans
- 04 flink 集群搭建
猜你喜欢

直播app开发,是优化直播体验不得不关注的两大指标

Complete knapsack problem to find the number of combinations and permutations

Vulnhub target drone: HARRYPOTTER_ NAGINI

ROS2系列知识(7):用rqt_console查看日志logs

【R语言】对图片进行裁剪 图片批量裁剪

08 spark 集群搭建

Description of common operations and help projects about DevExpress in C#

软件测试谈薪技巧:同为测试人员,为什么有人5K,有人 20K?

今晚直播!

阿里官方 Redis 开发规范
随机推荐
谁还敢买影视股?
M1芯片电脑安装cerebro
Complete knapsack problem to find the number of combinations and permutations
星途一直缺颠覆性产品?青岛工厂这款M38T,会是个突破点?
我的新书销量1万册了!
第一次改开源中间件keycloak总个结
The site is not found after the website is filed. You have not bound this domain name or IP to the corresponding site! The configuration file does not take effect!
Live tonight!
ROS2系列知识(6):Action服务概念
11 Publish a series as soon as it is released
半自动化爬虫-爬取一个网站的内容及回复
插入排序 优化插入排序
Good guy, the company server just crashed!
03 gp 集群搭建
网上开户佣金万一靠谱吗,网上开户安全吗
C# LibUsbDotNet 在USB-CDC设备的上位机应用
Pytorch|GAN在手写数字集上的复现
Vulnhub靶机:HARRYPOTTER_ NAGINI
MySQL locking case analysis
AntDB数据库亮相24届高速展,助力智慧高速创新应用