当前位置:网站首页>2022 Hangzhou Electric Power Multi-School League Game 5 Solution

2022 Hangzhou Electric Power Multi-School League Game 5 Solution

2022-08-04 03:35:00 Frank_Star

比赛传送门
作者: fn


签到题

1010题 Bragging Dice / “Brag dice”

题目大意
Two people play the cards “Brag dice” 游戏,Find out who wins first and second.
All the points cast by one person are not at the same time,Treated as having no points.

考察内容
博弈论

分析
When both players roll all different points,There are no points in the whole place,先手必败,否则先手必胜.

#include<bits/stdc++.h>
#define ll long long
#define cer(x) cerr<<(#x)<<" = "<<(x)<<'\n'
#define endl '\n'
using namespace std;
const int N=2e5+10;
ll n,a[N],b[N];

int main(){
     
	ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
	int t; cin>>t;
	while(t--){
    
		cin>>n;
		for(int i=1;i<=n;i++){
    
			cin>>a[i];
		}
		for(int i=1;i<=n;i++){
    
			cin>>b[i];
		}
		
		int num[10]={
    0};
		int same=0; // The person who records the number of points 
		
		for(int i=1;i<=n;i++){
    
			num[a[i]]++;
			if(num[a[i]]>=2){
    
				same++;
				break; 
			}
		}
		
		memset(num,0,sizeof num);
		for(int i=1;i<=n;i++){
    
			num[b[i]]++;
			if(num[b[i]]>=2){
    
				same++;
				break; 
			}
		}
		 
		if(same>=1)cout<<"Win!"<<endl; // 至少有1Personally count 
		else cout<<"Just a game of chance."<<endl;
	}
	return 0;
}
/* 1 5 1 2 3 4 5 1 2 3 4 4 */ 

基本题

1012题 Buy Figurines / 买手办

题目大意
Several people line up to buy a hand,Each person chooses the queue with the least number of people in the current queue.
Ask the last person to buy the time.

考察内容
模拟,复杂度优化

分析
解法不唯一.

directly on the subject,Just simulate everyone queuing up.
When a team is available,directly in.When there are no empty teams,Updates the current headcount for all teams,Then go to the line with the smallest number of people.

#include<bits/stdc++.h>
#define ll long long
#define cer(x) cerr<<(#x)<<" = "<<(x)<<'\n'
#define endl '\n'
using namespace std;
int read(int &n){
    
	char ch=' '; int q=0,w=1;
	for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
	if(ch=='-')w=-1,ch=getchar();
	for(;ch>='0'&&ch<='9';ch=getchar())q=q*10+ch-48;
	n=q*w; return n;
} 
ll read(ll &n){
    
	char ch=' '; ll q=0,w=1;
	for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
	if(ch=='-')w=-1,ch=getchar();
	for(;ch>='0'&&ch<='9';ch=getchar())q=q*10+ch-48;
	n=q*w; return n;
}
const int N=2e5+10;
ll n,m;

struct node{
    
	ll start,last;
}a[N];

bool cmp(node x,node y){
    
	return x.start<y.start;
}

vector<ll> v[N]; 
int p[N]; 
 
ll t[N]; // The last time for the team 
ll num[N]; // 队伍人数 

int main(){
     
	int t0; read(t0);
	while(t0--){
    
		read(n); read(m);
		for(int i=1;i<=n;i++){
    
			read(a[i].start);
			read(a[i].last);
		}
		sort(a+1,a+n+1,cmp); // 按照开始时间排序 
		
		memset(t,0,sizeof(t[0])*(n+1));
		memset(num,0,sizeof(num[0])*(m+1));
		memset(p,0,sizeof(p[0])*(m+1));
		for(int i=0;i<=m;i++)v[i].clear();
		
		for(int i=1;i<=n;i++){
     // Enumerate each one 
			int F=0;
			for(int j=1;j<=m;j++){
     // Enumerate each team 
				if(a[i].start>=t[j]){
     // can go directly in 
					F=1;
					t[j]=a[i].start+a[i].last;
					v[j].push_back(t[j]);
					num[j]++; 
					break;
				}	
			} 
			if(F){
      
				continue;
			}
			
			// When you can't find a team without people 
			for(int j=1;j<=m;j++){
     // Enumerate each team,更新num[j] 
				int len=v[j].size();
				for(int k=p[j];k<len;k++){
    
					if(v[j][k]<=a[i].start){
    
						p[j]++;
						num[j]--;
					}
					else{
    
						break;
					}
				} 
			}
			
			ll minnum=1e18; // Find the minimum number of teams 
			for(int j=1;j<=m;j++){
    
				minnum=min(minnum,num[j]);
			}
			for(int j=1;j<=m;j++){
    
				if(num[j]==minnum){
     // 人数最少 
					t[j]+=a[i].last;
					v[j].push_back(t[j]);
					num[j]++; 
					break; 
				}	
			} 
		}
		
		ll ans=0;
		for(int i=1;i<=m;i++){
    
			ans=max(ans,t[i]);
		}
		
		cout<<ans<<endl;
	}
	return 0;
}

1003题 Slipper / 拖鞋

题目大意
Given a tree and the weight of the top of the tree,Every time you can walk the edge of the tree,也可以花费 p p p The cost jumps up or down k k k 层.求点 s s s 到点 t t t 的最短路.

考察内容
树形dp,dfs,最短路

分析
I wrote one at the time of the gamedijkstra然后tle了,So I wrote a treedp.

Set a state for each point and each layer,Then start from the enddfsJust transfer it.

状态:
f [ i ] f[i] f[i] 表示第 i i i The shortest distance from a node to an end point.
f 2 [ i ] f2[i] f2[i] 表示第 i i i 层中"最好"The shortest distance from the point to the end point.

转移:
对于每个结点,Enumerates all out-edges and jumps up and down,更新答案.

This method does not add extra edges,Each node is enumerated at most once during transition,复杂度 O ( n ) O(n) O(n)

#pragma GCC optimize(3) // O3优化 
#include<bits/stdc++.h> 
#define ll long long
#define cer(x) cerr<<(#x)<<" = "<<(x)<<'\n'
#define endl '\n'
using namespace std;
int read(int &n){
    
	char ch=' '; int q=0,w=1;
	for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
	if(ch=='-')w=-1,ch=getchar();
	for(;ch>='0'&&ch<='9';ch=getchar())q=q*10+ch-48;
	n=q*w; return n;
} 
ll read(ll &n){
    
	char ch=' '; ll q=0,w=1;
	for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
	if(ch=='-')w=-1,ch=getchar();
	for(;ch>='0'&&ch<='9';ch=getchar())q=q*10+ch-48;
	n=q*w; return n;
}
const int N=1e6+5;
const int M=1e6+5; 

int head[N];
int ver[M],edge[M],nxt[M];
bool vis[N];

ll n,tot;
ll k,p,s,t;

ll u[N],v[N],w[N];
ll deep[N];
vector<ll> g[N];

ll f[N]; // f[i]表示第iThe shortest distance from a node to an end point 
ll f2[N]; // f2[i]表示第i层中"最好"The shortest distance from the point to the end point 
ll maxd=0;

void add(int x,int y,int z){
    
	ver[++tot]=y;
	edge[tot]=z; // 记录边权 
	nxt[tot]=head[x];
	head[x]=tot;
}

void dfs(int v,int fa,int d1){
     // Mark the node depth 
	deep[v]=d1;
	for(auto a1:g[v]){
    
		if(a1==fa)continue;
		
		dfs(a1,v,d1+1);
	}
}

void dfs2(int v){
    
	if(vis[v])return;
	
	vis[v]=1;
	int x=v;
	for(int i=head[x];i>0;i=nxt[i]){
     // enumerate out edges 
		int y=ver[i];
		int z=edge[i]; // zSave edge rights 
		if(abs(deep[x]-deep[y])==k){
     // 可以跳 
			z=min((ll)z,p); // 更新z 
		}
		
		if(f[y]>f[x]+z){
     
			f[y]=f[x]+z; // 转移 
		}			
		if(deep[y]+k<=maxd){
    
			f[y]=min(f[y],f2[deep[y]+k]+p); // 转移 
			f2[deep[y]]=min(f2[deep[y]],f[y]);
		}
		if(deep[y]-k>=1){
    
			f[y]=min(f[y],f2[deep[y]-k]+p); // 转移 
			f2[deep[y]]=min(f2[deep[y]],f[y]);
		}
		
		dfs2(y); 
	}
}

struct node{
    
	ll deep,id;
}n1[N];

bool cmp(node nx,node ny){
    
	return nx.deep<ny.deep;
}

void init(ll n){
     // 初始化 
	memset(head,0,sizeof(head[0])*(n+1));
	memset(vis,0,sizeof(vis[0])*(n+1));
	memset(deep,0,sizeof(deep[0])*(n+1));
	
	memset(ver,0,sizeof ver);
	memset(edge,0,sizeof edge);
	memset(nxt,0,sizeof nxt);
	tot=0; 
	
	for(int i=0;i<=n;i++){
    
		g[i].clear();
	}
}

int main(){
     // 树形dp 
	int t0; read(t0);
	while(t0--){
    
		read(n);
		for(int i=1;i<=n-1;i++){
    
			read(u[i]);
			read(v[i]);
			read(w[i]);
		}
		read(k); read(p); // 可以花费pThe skip depth gap is k的结点 
		read(s); read(t);
		
		init(n); // 初始化 
		
		for(int i=1;i<=n-1;i++){
    			
			add(u[i],v[i],w[i]);
			add(v[i],u[i],w[i]);
			
			g[u[i]].push_back(v[i]);
			g[v[i]].push_back(u[i]);
		}
		dfs(1,0,1); // 从根结点开始,Mark the depth of each node 
		
		for(int i=0;i<=n;i++){
    
			f[i]=f2[i]=1e18;
		}
		f[t]=0; // The distance from the end point to yourself0 
		
		maxd=deep[1]; // 保存最大深度 
		for(int i=2;i<=n;i++){
    
			maxd=max(maxd,deep[i]); 
		}
		f2[deep[t]]=0; 
	
		// The point at which the transition and the end point are directly connected 
		int x=t;
		for(int i=head[x];i>0;i=nxt[i]){
    
			int y=ver[i];
			int z=edge[i]; // zSave edge rights 
			
			if(f[y]>f[x]+z){
    
				f[y]=f[x]+z;
				f2[deep[y]]=min(f2[deep[y]],f[y]);
			}
		}
		
		for(int i=max(k,t+1);i<=maxd;i++){
    
			f2[i]=min(f2[i],f2[i-k]+p); // 更新f2[] 
		}
		for(int i=t-1;i>=1;i--){
    
			f2[i]=min(f2[i],f2[i+k]+p); // 更新f2[] 
		}
	
		dfs2(t); // 转移 
		
		cout<<f[s]<<endl; // The answer is the shortest distance from the start point to the end point 
	}
	return 0;
}
/* 1 11 1 2 10 2 3 10 1 4 10 4 5 10 1 6 10 6 7 10 1 8 10 8 9 10 1 10 10 10 11 10 1 2 3 11 */ 

进阶题

1007题 Count Set / 数集合

题目大意
从一个 1 1 1 n n n selection in the arrangement k k k 个数字,Requires that each selected number and all selected subscripts be different.

求选择的方案数.

考察内容
生成函数,NTT,数学知识,Pólya定理

分析

1007分析

#include<bits/stdc++.h>
#define fr(i,l) for(S i=0;i<l;i++)
#define S int
#define U unsigned
#define UL U long long
#define LL long long
constexpr U mod=998244353u;
constexpr U g=3u;
constexpr U gi=332748118u;
using std::max;
using std::min;
using std::swap;
U pow(U a,U b)
{
    
    U ans=1;
    while(b)
    {
    
        if(b&1)ans=(UL)ans*a%mod;
        a=(UL)a*a%mod;
        b>>=1;
    }
    return ans;
}
U mo(U x){
    return x>=mod?x-mod:x;}
U& mul(U&a,U b){
    return a=(UL)a*b%mod;}
void mov(U*a,const U*b,S len){
    memmove(a,b,len*sizeof(U));}

namespace Poly
{
    
    constexpr S ml=1<<19,mn=80;
    U mem[(ml+16)*mn],*stk[mn],top=mn,f[(ml+16)*2],wr[ml+16],wi[ml+16],ninv[ml+16];
    U*m(){
    return stk[--top];}void m(U*p){
    stk[top++]=p;}
    S up(S x){
    S l=1;while(l<x)l<<=1;return l;}
    void init()
    {
    
        fr(i,mn)stk[i]=mem+i*(ml+16);
        U*fp;
        for(S len=1;fp=f+len,len<=ml;len<<=1)
            fr(i,len)fp[i]=(fp[i>>1]>>1)|(i&1?len>>1:0);
        for(S len=1;len<ml;len<<=1)
        {
    
            U Wr=pow(g,(mod-1)/(len<<1));
            U Wi=pow(gi,(mod-1)/(len<<1));
            U tr=1,ti=1;
            fr(i,len)
            {
    
                wr[len+i]=tr;mul(tr,Wr);
                wi[len+i]=ti;mul(ti,Wi);
            }
        }
    }
#define lst(n,a,x) poly&n(a){
      x return*this;}
struct poly{
    
    U*mem,*a;
    S len;
    poly(S len):len(len){
    a=mem=m();cls(0,len);}
    poly():poly(1){
    }
    poly(U x):poly(){
    a[0]=x;}
    poly(U*l,S len):len(len){
    a=mem=m();mov(a,l,len);}
    poly(const poly&b):poly(b.a,b.len){
    }
    ~poly(){
    if(mem)m(mem);}
    lst(operator=,const poly&b,if(mem)rsz(b.len);mov(a,b.a,b.len);)
    U& operator[](S idx){
    return a[idx];}
    poly& cls(S l,S len){
    memset(a+l,0,len*4);return *this;}
    lst(rsz,S nlen,if(nlen>len)cls(len,nlen-len);len=nlen;)
    template<U*wp=wr>
    lst(NTT,S len=-1,static UL a[ml+16];
        if(~len)rsz(len);else len=this->len;
        fr(i,len)a[i]=this->a[f[len+i]];
        for(S i=1;i<len;i<<=1)
        {
    
            U*w=wp+i;
            for(S j=0;j<len;j+=i<<1)
            fr(k,i)
            {
    
                UL x=a[j+k];
                UL y=a[i+j+k]*w[k]%mod;
                a[j+k]=x+y;
                a[i+j+k]=x-y+mod;
            }
        }
        fr(i,len)this->a[i]=a[i]%mod;
    )
    lst(NTTi,S len=-1,NTT<wi>(len);*this*=pow(this->len,mod-2);)
    poly operator+(const poly&b){
    return poly(*this)+=b;}
    poly operator-(const poly&b){
    return poly(*this)-=b;}
    poly operator*(const poly&b){
    return poly(*this)*=b;}
    poly operator*(U x){
    return poly(*this)*=x;}
    lst(operator+=,const poly&b,rsz(max(len,b.len));fr(i,b.len)a[i]=mo(a[i]+b.a[i]);)
    lst(operator-=,const poly&b,rsz(max(len,b.len));fr(i,b.len)a[i]=mo(a[i]-b.a[i]+mod);)
    lst(operator*=,poly b,S l=up(len+b.len-1);NTT(l).vmul(b.NTT(l)).NTTi();)
    lst(operator*=,U x,fr(i,len)mul(a[i],x);)
    lst(vmul,const poly&b,fr(i,len)mul(a[i],b.a[i]);)
    lst(print,,fr(i,len)printf("%u ",a[i]);puts("");)
};
};
using Poly::poly;

U fact[500001];
U ifact[500001];

U C(int n,int m){
    
    if(m<0||m>n)return 0;
    return (UL)fact[n]*ifact[m]%mod*ifact[n-m]%mod;
}
int p[500000];
int vis[500000];
int sz[500000],num;

poly calc(int l,int r){
    
    if(l==r){
    
        poly t(sz[l]/2+1);
        t[0]=1;
        for(S i=1;i<t.len;i++)
            t[i]=mo(C(sz[l]-i-1,i-1)+C(sz[l]-i,i));
        return t;
    }
    else{
    
        int mid=l+r>>1;
        poly a=calc(l,mid);
        poly b=calc(mid+1,r);
        int len=a.len+b.len-1;
        return (a*=b).rsz(len);
    }
}


void sol(){
    
    int n,k;
    scanf("%d%d",&n,&k);
    fr(i,n)scanf("%d",p+i),p[i]--;
    memset(vis,0,4*n);
    num=0;
    fr(i,n){
    
        if(!vis[i]){
    
            vis[i]=1;
            sz[num]=1;
            int t=p[i];
            while(!vis[t]){
    
                vis[t]=1;
                sz[num]++;
                t=p[t];
            }
            if(sz[num]>1)num++;
        }
    }
    poly a=calc(0,num-1);
    
    if(k>=a.len){
    
    	printf("0\n");
    }
    else{
    
    	printf("%u\n",a[k]);
    }
}

int main(){
    
    Poly::init();
    
	// 预处理阶乘 
    fact[0]=1;
    for(S i=1;i<=500000;i++)
        fact[i]=(UL)fact[i-1]*i%mod; 
        
    ifact[500000]=pow(fact[500000],mod-2);
    for(S i=500000;i;i--)
        ifact[i-1]=(UL)ifact[i]*i%mod;
        
    int T;
    scanf("%d",&T);
    while(T--)sol();
}

原网站

版权声明
本文为[Frank_Star]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/216/202208040308409803.html