当前位置:网站首页>"Torch" tensor multiplication: matmul, einsum
"Torch" tensor multiplication: matmul, einsum
2022-08-01 20:01:00 【panbaoran913】
参考博文:《张量相乘matmul函数》
一、torch.matmul
matmul(input, other, out = None)
函数对 input 和 other Matrix multiplication of two tensors.torch.matmul The function has many overloaded functions depending on the tensor dimension of the passed arguments.
When multiplying tensors,并不是标准的 ( m , n ) × ( n , l ) = ( m , l ) (m,n) \times (n,l) =(m,l) (m,n)×(n,l)=(m,l)的形式.
三、1D and 2D multiplication
3.1 1D multiplied by 2D: ( m ) × ( m , n ) = ( n ) (m) \times (m,n)=(n) (m)×(m,n)=(n)
A1 =torch.FloatTensor(size=(4,))
A2=torch.FloatTensor(size=(4,3))
A12=torch.matmul(A1,A2)
A12.shape # (3,)
3.2 Two-dimensional by one-dimensional: ( m , n ) ∗ ( n ) = ( m ) (m,n)*(n)=(m) (m,n)∗(n)=(m)
A3=torch.FloatTensor(size=(3,4))
A31=torch.matmul(A3,A1)
A31.shape #(3,)
四、Multiply 2D and 3D
4.1 2D multiplication3维: ( m , n ) × ( b , n , l ) = ( b , m , l ) (m,n)\times (b, n, l)=(b, m, l) (m,n)×(b,n,l)=(b,m,l).The expansion plan is ( b , m , n ) × ( b , n , l ) = ( b , m , l ) (b, m,n)\times (b, n,l) =(b, m,l) (b,m,n)×(b,n,l)=(b,m,l)
B1=torch.FloatTensor(size=(2,3))
B2=torch.FloatTensor(size=(5,3,4))
B12=torch.matmul(B1,B2)
B12.shape #(5,2,4)
等价方案:
B12_=torch.einsum("ij,bjk->bik",B1,B2)
torch.sum(B12==B12_)#40=2*4*5
4.2 3D times 2D: ( b , m , n ) × ( n , l ) = ( b , m , l ) (b, m, n)\times (n,l)=(b, m,l) (b,m,n)×(n,l)=(b,m,l).
B2=torch.FloatTensor(size=(5,3,4))
B3=torch.FloatTensor(size=(4,2))
B23=torch.matmul(B2,B3)
B23.shape #(5,3,2)
等价方案:
BB23_ =torch.einsum("bij,jk->bik",[B2,B3])
BB23_.shape #(5,3,2)
torch.sum(B23==BB23_)#30=5*3*2
4. 3 Two-dimensional expansion into three-dimensional way
方式一:The first tensor is expanded from two dimensions to three dimensions
B1(2,3)–>B1_(5,2,3)
B1=torch.FloatTensor(size=(2,3))
B1_ =torch.unsqueeze(B1,axis=0) #升维
print(B1_.shape) #torch.Size([1, 2, 3])
B11 =torch.cat([B1_,B1_,B1_,B1_,B1_],axis=0)#合并-->扩维
print(B11.shape) #torch.Size([5, 2, 3])
比较 B 1 ( 2 , 3 ) × B 2 ( 5 , 3 , 4 ) 与 B 11 ( 5 , 2 , 3 ) × B 2 ( 5 , 3 , 4 ) B1(2,3)\times B2(5,3,4)与B11(5,2,3)\times B2(5,3,4) B1(2,3)×B2(5,3,4)与B11(5,2,3)×B2(5,3,4)的结果
B112=torch.matmul(B11,B2)#(5,2,3)*(5,3,4)
torch.sum(B112==B12)#40=5*2*3
Indicates that both values are exactly the same.Let's further explore the mechanism of its multiplication.
我们拿B1(2,3)与B2(5,3,4)Multiply the first matrix in ,to see if it is equal to the first matrix in . The following proofs are equivalent
B12_0=torch.matmul(B1,B2[0])
B112[0]==B12_[0]
out:
tensor([[True, True, True, True],
[True, True, True, True]])
2Dimension multiplied by3Dimensional Matrix Demonstration Diagram
方式二:The second tensor is expanded from two dimensions to three dimensions
B3(4,2)–>B3_(5, 4, 2)
B3_=torch.unsqueeze(B3,axis=0)
print(B3_.shape)#(1,4,2)
B33 =torch.cat([B3_,B3_,B3_,B3_,B3_],axis=0)
print(B33.shape)#(5,4,2)
B233 =torch.matmul(B2,B33)
print(B233.shape) #(5,3,2)
Compare the results of the two multiplications:
print(torch.sum(B233==B23_)) #30
print(torch.sum(B233==B23)) #30
提醒:torch的FloatTensor中出现了nan值,seems to be unequal.
五、Multiply 2D and 4D
5.1 Two-dimensional by four-dimensional: ( m , n ) × ( b , c , n , l ) = ( b , c , m , l ) (m,n)\times (b,c,n,l) =(b,c,m,l) (m,n)×(b,c,n,l)=(b,c,m,l)
B1=torch.FloatTensor(size=(2,3))
B4 =torch.FloatTensor(size=(7,5,3,4))
B14 =torch.matmul(B1,B4)
print(B14.shape) #(7, 5, 2, 4)
等价方案
B14_= torch.einsum("mn,bcnl->bcml",[B1,B4])
print(torch.sum(B14==B14_))#280=7*5*2*4
升维
## 升维
B11 = torch.unsqueeze(B1,dim=0)
B11 = torch.concat([B11,B11,B11,B11,B11],dim=0)
print(B11.shape)#(5,2,3)
B111 = torch.unsqueeze(B11,dim=0)
B111 =torch.concat([B111,B111,B111,B111,B111,B111,B111],dim = 0)
print(B111.shape)#(7,5,2,3)
广播后的4Dimension multiplied by4维
B1114 = torch.matmul(B111,B4)
print(B1114.shape)#(7,5,3,4)
print(torch.sum(B1114==B14))#280
5.2 Four dimensions multiplied by two dimensions: ( b , c , n , l ) × ( l , p ) = ( b , c , n , p ) (b,c,n,l) \times (l,p)= (b,c,n,p) (b,c,n,l)×(l,p)=(b,c,n,p)
4Dimension multiplied by2维
B43 = torch.matmul(B4,B3)
print("B43 shape",B43.shape) #(7,5,3,2)
等价形式
B43_ = torch.einsum("bcnl,lp->bcnp",[B4,B3])
print("B4 is nan",torch.sum(B4.isnan()))#0
print(torch.sum(B43==B43_))#210 =7*5*3*2
升维
B33 =torch.unsqueeze(B3,dim=0)
B33 = torch.concat([B33,B33,B33,B33,B33],dim =0)
B333 = torch.unsqueeze(B33,dim =0)
B333 =torch.concat([B333,B333,B333,B333,B333,B333,B333],dim =0)
print("B333 shape is",B333.shape)#(7,5,4,2)
广播后4Dimension multiplied by4维
B4333 =torch.matmul(B4,B333)
print("B4333 shape is",B4333.shape)#(7,5,3,2)
边栏推荐
猜你喜欢
随机推荐
SIPp 安装及使用
WhatsApp group sending actual combat sharing - WhatsApp Business API account
数值矩阵的图形表示
{ValueError}Number of classes, 1, does not match size of target_names, 2. Tr
An implementation of an ordered doubly linked list.
终于有人把AB实验讲明白了
【torch】张量乘法:matmul,einsum
Redis 做签到统计
第60章 ApplicationPart自动集成整体性和独立性插件项
【kali-信息收集】(1.5)系统指纹识别:Nmap、p0f
【Untitled】
因斯布鲁克大学团队量子计算硬件突破了二进制
MySQL你到底都加了什么锁?
【节能学院】推进农业水价综合改革的意见解读
给定中序遍历和另外一种遍历方法确定一棵二叉树
【无标题】
突破边界,华为存储的破壁之旅
57: Chapter 5: Develop admin management services: 10: Develop [get files from MongoDB's GridFS, interface]; (from GridFS, get the SOP of files) (Do not use MongoDB's service, you can exclude its autom
环境变量,进程地址空间
如何写一个vim插件?