当前位置:网站首页>Dimension table and fact table in data warehouse
Dimension table and fact table in data warehouse
2022-07-02 15:53:00 【Taro shaft-】
Catalog
1.2 Characteristics of dimension table
2.2 The characteristics of the fact table
2.3 Classification of fact tables
1、 Dimension table
1.1 Dimension table
Dimension tables are generally descriptive information about facts , Each dimension table corresponds to an object or a concept in the real world .
for example : user , goods , date , Such area
1.2 Characteristics of dimension table
1) The dimension table has a wide range
2) Compared with the fact table , Fewer rows
3) The content is relatively fixed
For example, time dimension table :

2 Fact table
2.1 The concept of fact table
In the fact table Each line represents a business event ( Place an order , payment , Refund, etc ).“ The facts ” This term represents a measure of business events ( Can count the number of times , Number , Amount, etc. )
for example ,xxx One day I bought a product on a platform 250 element .
2.2 The characteristics of the fact table
1) Very big
2) The content is relatively narrow : Fewer columns
3) Change often , A lot more will be added every day
2.3 Classification of fact tables
1) Transactional fact table
Take each event as a unit ,
for example , A sales order , A payment record, etc
2) Periodic snapshot fact table
Periodic snapshot fact table Not all data will be retained , Keep only data at fixed intervals
for example , Daily or monthly sales , Or monthly account balance
3) Cumulative snapshot fact table
The cumulative snapshot fact table is used to track changes in business facts
for example , The data warehouse may need to accumulate or store orders from the time of placing an order , To order items are packaged 、 transport 、 And the time point data of each business stage signed in to track the progress of the order declaration cycle .
边栏推荐
- [leetcode] 1905 statistics sub Island
- Boot 连接 Impala数据库
- /bin/ld: 找不到 -lcrypto
- [experience cloud] how to get the metadata of experience cloud in vscode
- 二叉树前,中,后序遍历
- How to import a billion level offline CSV into Nepal graph
- PHP static members
- Use ffmpeg command line to push UDP and RTP streams (H264 and TS), and ffplay receives
- Fiddler realizes mobile packet capturing - getting started
- 使用 percona 工具给 MySQL 表加字段中断后该如何操作
猜你喜欢

Finally, I understand the event loop, synchronous / asynchronous, micro task / macro task, and operation mechanism in JS (with test questions attached)

Introduction to dynamic planning I, BFS of queue (70.121.279.200)

中科大脑知识图谱平台建设及业务实践

Nebula Graph & 数仓血缘关系数据的存储与读写

【5G NR】RRC连接释放

How to import a billion level offline CSV into Nepal graph

PHP static members

Introduction to Dynamic Planning II (5.647.62)

XPT2046 四线电阻式触摸屏

图数据库|Nebula Graph v3.1.0 性能报告
随机推荐
College entrance examination admission score line crawler
Postgressql stream replication active / standby switchover primary database no read / write downtime scenario
/bin/ld: 找不到 -lgssapi_krb5
Astra: could not open "2bc5/ [email protected] /6“: Failed to set USB interface
PyObject 转 char* (string)
/Bin/ld: cannot find -lssl
全是精华的模电专题复习资料:基本放大电路知识点
/bin/ld: 找不到 -llz4
Soul torture, what is AQS???
Digital collection system development (program development) - Digital Collection 3D modeling economic model system development source code
Some problems about pytorch extension
Boot 连接 Impala数据库
智联招聘的基于 Nebula Graph 的推荐实践分享
如何實現十億級離線 CSV 導入 Nebula Graph
Boot 事务使用
Fastjson list to jsonarray and jsonarray to list "suggested collections"
Lseek error
睿智的目标检测23——Pytorch搭建SSD目标检测平台
仙人掌之歌——投石问路(3)
Demo of converting point cloud coordinates to world coordinates