当前位置:网站首页>[combinatorics] recursive equation (the relationship theorem between the solution of the recursive equation and the characteristic root | the linear property theorem of the solution of the recursive e
[combinatorics] recursive equation (the relationship theorem between the solution of the recursive equation and the characteristic root | the linear property theorem of the solution of the recursive e
2022-07-03 16:53:00 【Programmer community】
List of articles
- One 、 The relation theorem between the solution of recurrence equation and characteristic root
- Two 、 The linear property theorem of the solution of recurrence equation
- 3、 ... and 、 The form of the solution of the recursive equation
One 、 The relation theorem between the solution of recurrence equation and characteristic root
Characteristic root And Solution of recurrence equation There is a relationship between , If you know the inner connection , Can According to characteristic root , Write the pattern of the solution of the recursive equation , namely general solution ;
Recurrence equation solution and characteristic root correlation theorem :
q
q
q Right and wrong
0
0
0 The plural , Then there is the following equivalence relationship :
q
q
q Is the characteristic root of the characteristic equation
⇔
\Leftrightarrow
⇔
q
n
q^n
qn Is the solution of a recursive equation *
Prove the above theorem :
By definition , take Solution of recurrence equation
q
n
q^n
qn , Into the original recursive equation ,
The solution of the recurrence equation is
q
n
q^n
qn , On behalf of The first
n
n
n The value of the item is
q
n
q^n
qn , namely
H
(
n
)
=
q
n
H(n) = q^n
H(n)=qn ;
Recurrence equation :
H
(
n
)
−
a
1
H
(
n
−
1
)
−
a
2
H
(
n
−
2
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
H(n) - a_1H(n-1) - a_2H(n-2) - \cdots - a_kH(n-k) = 0
H(n)−a1H(n−1)−a2H(n−2)−⋯−akH(n−k)=0 ,
- The first
n
n
n term
H
(
n
)
H(n)
H(n) The value of is
q
n
q^n
qn
- The first
n
−
1
n-1
n−1 term
H
(
n
−
1
)
H(n-1)
H(n−1) The value of is
q
n
−
1
q^{n-1}
qn−1
- The first
n
−
2
n-2
n−2 term
H
(
n
−
2
)
H(n-2)
H(n−2) The value of is
q
n
−
2
q^{n-2}
qn−2
⋮
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots
⋮
- The first
n
−
k
n-k
n−k term
H
(
n
−
k
)
H(n-k)
H(n−k) The value of is
q
n
−
k
q^{n-k}
qn−k
After substitution, the result is :
q
n
\ \ \ \ \ q^n
qn Is the solution of a recursive equation
⇔
q
n
−
a
1
q
n
−
1
−
a
2
q
n
−
2
−
⋯
−
a
k
q
n
−
k
=
0
\Leftrightarrow q^n - a_1q^{n-1} - a_2q^{n-2} - \cdots - a_kq^{n-k} = 0
⇔qn−a1qn−1−a2qn−2−⋯−akqn−k=0
take
q
n
−
k
q^{n-k}
qn−k Extracted as a common factor ;
⇔
q
n
−
k
(
q
k
−
a
1
q
k
−
1
−
a
2
q
k
−
2
−
⋯
−
a
k
)
=
0
\Leftrightarrow q^{n-k} ( q^k - a_1q^{k-1} - a_2q^{k-2} - \cdots - a_k ) = 0
⇔qn−k(qk−a1qk−1−a2qk−2−⋯−ak)=0
The product of the above two is
0
0
0 ,
q
n
−
k
q^{n-k}
qn−k Definitely not
0
0
0 , Then the rest of the result is
0
0
0 ;
⇔
q
k
−
a
1
q
k
−
1
−
a
2
q
k
−
2
−
⋯
−
a
k
=
0
\Leftrightarrow q^k - a_1q^{k-1} - a_2q^{k-2} - \cdots - a_k = 0
⇔qk−a1qk−1−a2qk−2−⋯−ak=0
The above equation , Exactly the characteristic equation , The solution of the characteristic equation , Is the characteristic root
q
q
q ;
⇔
\Leftrightarrow
⇔
q
q
q Is the characteristic root
Two 、 The linear property theorem of the solution of recurrence equation
The linear property theorem of the solution of recurrence equation :
h
1
(
n
)
h_1(n)
h1(n) and
h
2
(
n
)
h_2(n)
h2(n) Are the solutions of the same recursive equation ,
c
1
,
c
2
c_1 , c_2
c1,c2 It's an arbitrary constant ,
Use these two solutions as A linear combination ,
c
1
h
1
(
n
)
+
c
2
h
2
(
n
)
c_1h_1(n) + c_2h_2(n)
c1h1(n)+c2h2(n) , This linear combination is also the solution of the recursive equation ;
Method of proof :
take
c
1
h
1
(
n
)
+
c
2
h
2
(
n
)
c_1h_1(n) + c_2h_2(n)
c1h1(n)+c2h2(n) The combination is substituted into the left formula of the recursive equation , It is reduced to
0
0
0 ;
Recurrence equation :
H
(
n
)
−
a
1
H
(
n
−
1
)
−
a
2
H
(
n
−
2
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
H(n) - a_1H(n-1) - a_2H(n-2) - \cdots - a_kH(n-k) = 0
H(n)−a1H(n−1)−a2H(n−2)−⋯−akH(n−k)=0 ,
take
c
1
h
1
(
n
)
+
c
2
h
2
(
n
)
c_1h_1(n) + c_2h_2(n)
c1h1(n)+c2h2(n) The linear combination is substituted into the above equation ,
H
(
n
)
H(n)
c
1
h
1
(
n
)
+
c
2
h
2
(
n
)
c_1h_1(n) + c_2h_2(n)
c1h1(n)+c2h2(n) Instead of
H(n) Use
H
(
n
−
1
)
H(n-1)
H(n−1) Use
c
1
h
1
(
n
−
1
)
+
c
2
h
2
(
n
−
1
)
c_1h_1(n-1) + c_2h_2(n-1)
c1h1(n−1)+c2h2(n−1) Instead of
H
(
n
−
2
)
H(n-2)
H(n−2) Use
c
1
h
1
(
n
−
2
)
+
c
2
h
2
(
n
−
2
)
c_1h_1(n-2) + c_2h_2(n-2)
c1h1(n−2)+c2h2(n−2) Instead of
H
(
n
−
k
)
H(n-k)
H(n−k) Use
c
1
h
1
(
n
−
k
)
+
c
2
h
2
(
n
−
k
)
c_1h_1(n-k) + c_2h_2(n-k)
c1h1(n−k)+c2h2(n−k) Instead of
obtain :
(
c
1
h
1
(
n
)
+
c
2
h
2
(
n
)
)
(c_1h_1(n) + c_2h_2(n))
(c1h1(n)+c2h2(n))
−
-
−
a
1
(
a_1(
a1(
c
1
h
1
(
n
−
1
)
+
c
2
h
2
(
n
−
1
)
c_1h_1(n-1) + c_2h_2(n-1)
c1h1(n−1)+c2h2(n−1)
)
−
a
2
) - a_2
)−a2
(
c
1
h
1
(
n
−
2
)
+
c
2
h
2
(
n
−
2
)
)
(c_1h_1(n-2) + c_2h_2(n-2))
(c1h1(n−2)+c2h2(n−2))
−
⋯
−
a
k
(
- \cdots - a_k(
−⋯−ak(
c
1
h
1
(
n
−
k
)
+
c
2
h
2
(
n
−
k
)
c_1h_1(n-k) + c_2h_2(n-k)
c1h1(n−k)+c2h2(n−k)
)
=
0
) = 0
)=0
Will all contain
c
1
h
1
c_1h_1
c1h1 Merge items together , Will all contain
c
2
h
2
c_2h_2
c2h2 The item , Merge together , obtain :
c
1
(
h
1
(
n
)
−
a
1
h
1
(
n
−
1
)
−
a
2
h
1
(
n
−
2
)
−
⋯
−
a
k
h
1
(
n
−
k
)
)
c_1( h_1(n) - a_1h_1(n-1) - a_2h_1(n-2) - \cdots - a_kh_1(n-k))
c1(h1(n)−a1h1(n−1)−a2h1(n−2)−⋯−akh1(n−k))
+
+
+
c
2
(
h
2
(
n
)
−
a
1
h
2
(
n
−
1
)
−
a
2
h
2
(
n
−
2
)
−
⋯
−
a
k
h
k
(
n
−
k
)
)
c_2( h_2(n) - a_1h_2(n-1) - a_2h_2(n-2) - \cdots - a_kh_k(n-k))
c2(h2(n)−a1h2(n−1)−a2h2(n−2)−⋯−akhk(n−k))
=
0
= 0
=0
In the above formula The blue part and The red part The difference is
0
0
0
h
1
(
n
)
h_1(n)
h1(n) Is the solution of a recursive equation , therefore
c
1
(
h
1
(
n
)
−
a
1
h
1
(
n
−
1
)
−
a
2
h
1
(
n
−
2
)
−
⋯
−
a
k
h
1
(
n
−
k
)
)
c_1( h_1(n) - a_1h_1(n-1) - a_2h_1(n-2) - \cdots - a_kh_1(n-k))
c1(h1(n)−a1h1(n−1)−a2h1(n−2)−⋯−akh1(n−k)) The value of is
0
0
0 ;
h
2
(
n
)
h_2(n)
h2(n) Is the solution of a recursive equation , therefore
c
2
(
h
2
(
n
)
−
a
1
h
2
(
n
−
1
)
−
a
2
h
2
(
n
−
2
)
−
⋯
−
a
k
h
k
(
n
−
k
)
)
c_2( h_2(n) - a_1h_2(n-1) - a_2h_2(n-2) - \cdots - a_kh_k(n-k))
c2(h2(n)−a1h2(n−1)−a2h2(n−2)−⋯−akhk(n−k)) The value of is
0
0
0 ;
3、 ... and 、 The form of the solution of the recursive equation
Put the previous “ The relation theorem between the solution of recurrence equation and characteristic root ” And “ The linear property theorem of the solution of recurrence equation ” Bind together , Can According to characteristic root , Write the solution of the recursive equation ;
Assume
q
1
,
q
2
,
⋯
,
q
k
q_1 , q_2 , \cdots , q_k
q1,q2,⋯,qk Is the characteristic root of a recursive equation , One yuan
k
k
k The quadratic equation has
k
k
k A root ;
according to “ The relation theorem between the solution of recurrence equation and characteristic root ” ,
q
1
n
,
q
2
n
,
⋯
,
q
k
n
q_1^n, q_2^n , \cdots , q_k^n
q1n,q2n,⋯,qkn Are the solutions of recursive equations ,
Will this
k
k
k A solution , Make a linear combination ,
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn ,
according to “ The linear property theorem of the solution of recurrence equation ” , The above linear combination
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn It is also the solution of the recursive equation ;
At this time, a form of the solution of the recursive equation is found ;
Sum up the process :
- The standard form of recurrence equation : Write the recurrence equation Standard form , All items are to the left of the equal sign , On the right is
0
0
0 ;
- Number of terms of characteristic equation : determine Number of terms of characteristic equation , And The recurrence equation has the same number of terms ;
- The characteristic equation is sub idempotent : The highest power is Number of terms of characteristic equation
−
1
-1
0
0
0 ;
−1 , Lowest power
- Write There is no coefficient The characteristic equation of ;
- The coefficients of the recursive equation will be deduced bit by bit Copy Into the characteristic equation ;
- Solution characteristic root : take The eigenvalue of the characteristic equation is solved ,
x
=
−
b
±
b
2
−
4
a
c
2
a
x = \cfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
x=2a−b±b2−4ac
- Construct the solution of the recursive equation : structure
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn Linear combination of forms , The linear combination is the solution of the recursive equation ;
Satisfy
H
(
n
)
−
a
1
H
(
n
−
1
)
−
a
2
H
(
n
−
2
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
H(n) - a_1H(n-1) - a_2H(n-2) - \cdots - a_kH(n-k) = 0
H(n)−a1H(n−1)−a2H(n−2)−⋯−akH(n−k)=0 All recursive equations of the formula , All have
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn Formal solution ;
边栏推荐
- C语言字符串反转
- Aike AI frontier promotion (7.3)
- CC2530 common registers for port initialization
- NLP four paradigms: paradigm 1: fully supervised learning in the era of non neural networks (Feature Engineering); Paradigm 2: fully supervised learning based on neural network (Architecture Engineeri
- PHP CI (CodeIgniter) log level setting
- Threejs Part 2: vertex concept, geometry structure
- Data driving of appium framework for mobile terminal automated testing
- 什么是质押池,如何进行质押呢?
- To resist 7-Zip, list "three sins"? Netizen: "is the third key?"
- UCORE overview
猜你喜欢

Unreal_ Datatable implements ID self increment and sets rowname

Visual SLAM algorithms: a survey from 2010 to 2016

NLP四范式:范式一:非神经网络时代的完全监督学习(特征工程);范式二:基于神经网络的完全监督学习(架构工程);范式三:预训练,精调范式(目标工程);范式四:预训练,提示,预测范式(Prompt工程)

Simulink oscilloscope data is imported into Matlab and drawn

爱可可AI前沿推介(7.3)

IDEA-配置插件

Arduino esp32: overall framework of lvgl project (I)

What material is sa537cl2 equivalent to in China? Sa537cl2 corresponding material

Daily code 300 lines learning notes day 10

CC2530 common registers for timer 1
随机推荐
mysql用户管理
定义一个结构体Fraction,表示分数,用于表示 2/3, 5/6这样的分数
Golang anonymous function use
Unreal_ Datatable implements ID self increment and sets rowname
AcWing 第58 场周赛
[combinatorics] non descending path problem (number of non descending paths with constraints)
Necessary ability of data analysis
Is it safe to open a stock account by mobile registration? Does it need money to open an account
utfwry. Dat PHP, about ThinkPHP's method of IP location using utfwry address Library
CC2530 common registers for watchdog
Add color to the interface automation test framework and realize the enterprise wechat test report
【剑指 Offer 】57 - II. 和为s的连续正数序列
Why is WPA3 security of enterprise business so important?
PHP converts a one-dimensional array into a two-dimensional array
Difference between JSON and bson
Static program analysis (I) -- Outline mind map and content introduction
function overloading
[combinatorics] polynomial theorem (polynomial theorem | polynomial theorem proof | polynomial theorem inference 1 item number is the number of non negative integer solutions | polynomial theorem infe
UCORE overview
MySQL converts comma separated attribute field data from column to row