当前位置:网站首页>[combinatorics] recursive equation (the relationship theorem between the solution of the recursive equation and the characteristic root | the linear property theorem of the solution of the recursive e
[combinatorics] recursive equation (the relationship theorem between the solution of the recursive equation and the characteristic root | the linear property theorem of the solution of the recursive e
2022-07-03 16:53:00 【Programmer community】
List of articles
- One 、 The relation theorem between the solution of recurrence equation and characteristic root
- Two 、 The linear property theorem of the solution of recurrence equation
- 3、 ... and 、 The form of the solution of the recursive equation
One 、 The relation theorem between the solution of recurrence equation and characteristic root
Characteristic root And Solution of recurrence equation There is a relationship between , If you know the inner connection , Can According to characteristic root , Write the pattern of the solution of the recursive equation , namely general solution ;
Recurrence equation solution and characteristic root correlation theorem :
q
q
q Right and wrong
0
0
0 The plural , Then there is the following equivalence relationship :
q
q
q Is the characteristic root of the characteristic equation
⇔
\Leftrightarrow
⇔
q
n
q^n
qn Is the solution of a recursive equation *
Prove the above theorem :
By definition , take Solution of recurrence equation
q
n
q^n
qn , Into the original recursive equation ,
The solution of the recurrence equation is
q
n
q^n
qn , On behalf of The first
n
n
n The value of the item is
q
n
q^n
qn , namely
H
(
n
)
=
q
n
H(n) = q^n
H(n)=qn ;
Recurrence equation :
H
(
n
)
−
a
1
H
(
n
−
1
)
−
a
2
H
(
n
−
2
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
H(n) - a_1H(n-1) - a_2H(n-2) - \cdots - a_kH(n-k) = 0
H(n)−a1H(n−1)−a2H(n−2)−⋯−akH(n−k)=0 ,
- The first
n
n
n term
H
(
n
)
H(n)
H(n) The value of is
q
n
q^n
qn
- The first
n
−
1
n-1
n−1 term
H
(
n
−
1
)
H(n-1)
H(n−1) The value of is
q
n
−
1
q^{n-1}
qn−1
- The first
n
−
2
n-2
n−2 term
H
(
n
−
2
)
H(n-2)
H(n−2) The value of is
q
n
−
2
q^{n-2}
qn−2
⋮
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots
⋮
- The first
n
−
k
n-k
n−k term
H
(
n
−
k
)
H(n-k)
H(n−k) The value of is
q
n
−
k
q^{n-k}
qn−k
After substitution, the result is :
q
n
\ \ \ \ \ q^n
qn Is the solution of a recursive equation
⇔
q
n
−
a
1
q
n
−
1
−
a
2
q
n
−
2
−
⋯
−
a
k
q
n
−
k
=
0
\Leftrightarrow q^n - a_1q^{n-1} - a_2q^{n-2} - \cdots - a_kq^{n-k} = 0
⇔qn−a1qn−1−a2qn−2−⋯−akqn−k=0
take
q
n
−
k
q^{n-k}
qn−k Extracted as a common factor ;
⇔
q
n
−
k
(
q
k
−
a
1
q
k
−
1
−
a
2
q
k
−
2
−
⋯
−
a
k
)
=
0
\Leftrightarrow q^{n-k} ( q^k - a_1q^{k-1} - a_2q^{k-2} - \cdots - a_k ) = 0
⇔qn−k(qk−a1qk−1−a2qk−2−⋯−ak)=0
The product of the above two is
0
0
0 ,
q
n
−
k
q^{n-k}
qn−k Definitely not
0
0
0 , Then the rest of the result is
0
0
0 ;
⇔
q
k
−
a
1
q
k
−
1
−
a
2
q
k
−
2
−
⋯
−
a
k
=
0
\Leftrightarrow q^k - a_1q^{k-1} - a_2q^{k-2} - \cdots - a_k = 0
⇔qk−a1qk−1−a2qk−2−⋯−ak=0
The above equation , Exactly the characteristic equation , The solution of the characteristic equation , Is the characteristic root
q
q
q ;
⇔
\Leftrightarrow
⇔
q
q
q Is the characteristic root
Two 、 The linear property theorem of the solution of recurrence equation
The linear property theorem of the solution of recurrence equation :
h
1
(
n
)
h_1(n)
h1(n) and
h
2
(
n
)
h_2(n)
h2(n) Are the solutions of the same recursive equation ,
c
1
,
c
2
c_1 , c_2
c1,c2 It's an arbitrary constant ,
Use these two solutions as A linear combination ,
c
1
h
1
(
n
)
+
c
2
h
2
(
n
)
c_1h_1(n) + c_2h_2(n)
c1h1(n)+c2h2(n) , This linear combination is also the solution of the recursive equation ;
Method of proof :
take
c
1
h
1
(
n
)
+
c
2
h
2
(
n
)
c_1h_1(n) + c_2h_2(n)
c1h1(n)+c2h2(n) The combination is substituted into the left formula of the recursive equation , It is reduced to
0
0
0 ;
Recurrence equation :
H
(
n
)
−
a
1
H
(
n
−
1
)
−
a
2
H
(
n
−
2
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
H(n) - a_1H(n-1) - a_2H(n-2) - \cdots - a_kH(n-k) = 0
H(n)−a1H(n−1)−a2H(n−2)−⋯−akH(n−k)=0 ,
take
c
1
h
1
(
n
)
+
c
2
h
2
(
n
)
c_1h_1(n) + c_2h_2(n)
c1h1(n)+c2h2(n) The linear combination is substituted into the above equation ,
H
(
n
)
H(n)
c
1
h
1
(
n
)
+
c
2
h
2
(
n
)
c_1h_1(n) + c_2h_2(n)
c1h1(n)+c2h2(n) Instead of
H(n) Use
H
(
n
−
1
)
H(n-1)
H(n−1) Use
c
1
h
1
(
n
−
1
)
+
c
2
h
2
(
n
−
1
)
c_1h_1(n-1) + c_2h_2(n-1)
c1h1(n−1)+c2h2(n−1) Instead of
H
(
n
−
2
)
H(n-2)
H(n−2) Use
c
1
h
1
(
n
−
2
)
+
c
2
h
2
(
n
−
2
)
c_1h_1(n-2) + c_2h_2(n-2)
c1h1(n−2)+c2h2(n−2) Instead of
H
(
n
−
k
)
H(n-k)
H(n−k) Use
c
1
h
1
(
n
−
k
)
+
c
2
h
2
(
n
−
k
)
c_1h_1(n-k) + c_2h_2(n-k)
c1h1(n−k)+c2h2(n−k) Instead of
obtain :
(
c
1
h
1
(
n
)
+
c
2
h
2
(
n
)
)
(c_1h_1(n) + c_2h_2(n))
(c1h1(n)+c2h2(n))
−
-
−
a
1
(
a_1(
a1(
c
1
h
1
(
n
−
1
)
+
c
2
h
2
(
n
−
1
)
c_1h_1(n-1) + c_2h_2(n-1)
c1h1(n−1)+c2h2(n−1)
)
−
a
2
) - a_2
)−a2
(
c
1
h
1
(
n
−
2
)
+
c
2
h
2
(
n
−
2
)
)
(c_1h_1(n-2) + c_2h_2(n-2))
(c1h1(n−2)+c2h2(n−2))
−
⋯
−
a
k
(
- \cdots - a_k(
−⋯−ak(
c
1
h
1
(
n
−
k
)
+
c
2
h
2
(
n
−
k
)
c_1h_1(n-k) + c_2h_2(n-k)
c1h1(n−k)+c2h2(n−k)
)
=
0
) = 0
)=0
Will all contain
c
1
h
1
c_1h_1
c1h1 Merge items together , Will all contain
c
2
h
2
c_2h_2
c2h2 The item , Merge together , obtain :
c
1
(
h
1
(
n
)
−
a
1
h
1
(
n
−
1
)
−
a
2
h
1
(
n
−
2
)
−
⋯
−
a
k
h
1
(
n
−
k
)
)
c_1( h_1(n) - a_1h_1(n-1) - a_2h_1(n-2) - \cdots - a_kh_1(n-k))
c1(h1(n)−a1h1(n−1)−a2h1(n−2)−⋯−akh1(n−k))
+
+
+
c
2
(
h
2
(
n
)
−
a
1
h
2
(
n
−
1
)
−
a
2
h
2
(
n
−
2
)
−
⋯
−
a
k
h
k
(
n
−
k
)
)
c_2( h_2(n) - a_1h_2(n-1) - a_2h_2(n-2) - \cdots - a_kh_k(n-k))
c2(h2(n)−a1h2(n−1)−a2h2(n−2)−⋯−akhk(n−k))
=
0
= 0
=0
In the above formula The blue part and The red part The difference is
0
0
0
h
1
(
n
)
h_1(n)
h1(n) Is the solution of a recursive equation , therefore
c
1
(
h
1
(
n
)
−
a
1
h
1
(
n
−
1
)
−
a
2
h
1
(
n
−
2
)
−
⋯
−
a
k
h
1
(
n
−
k
)
)
c_1( h_1(n) - a_1h_1(n-1) - a_2h_1(n-2) - \cdots - a_kh_1(n-k))
c1(h1(n)−a1h1(n−1)−a2h1(n−2)−⋯−akh1(n−k)) The value of is
0
0
0 ;
h
2
(
n
)
h_2(n)
h2(n) Is the solution of a recursive equation , therefore
c
2
(
h
2
(
n
)
−
a
1
h
2
(
n
−
1
)
−
a
2
h
2
(
n
−
2
)
−
⋯
−
a
k
h
k
(
n
−
k
)
)
c_2( h_2(n) - a_1h_2(n-1) - a_2h_2(n-2) - \cdots - a_kh_k(n-k))
c2(h2(n)−a1h2(n−1)−a2h2(n−2)−⋯−akhk(n−k)) The value of is
0
0
0 ;
3、 ... and 、 The form of the solution of the recursive equation
Put the previous “ The relation theorem between the solution of recurrence equation and characteristic root ” And “ The linear property theorem of the solution of recurrence equation ” Bind together , Can According to characteristic root , Write the solution of the recursive equation ;
Assume
q
1
,
q
2
,
⋯
,
q
k
q_1 , q_2 , \cdots , q_k
q1,q2,⋯,qk Is the characteristic root of a recursive equation , One yuan
k
k
k The quadratic equation has
k
k
k A root ;
according to “ The relation theorem between the solution of recurrence equation and characteristic root ” ,
q
1
n
,
q
2
n
,
⋯
,
q
k
n
q_1^n, q_2^n , \cdots , q_k^n
q1n,q2n,⋯,qkn Are the solutions of recursive equations ,
Will this
k
k
k A solution , Make a linear combination ,
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn ,
according to “ The linear property theorem of the solution of recurrence equation ” , The above linear combination
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn It is also the solution of the recursive equation ;
At this time, a form of the solution of the recursive equation is found ;
Sum up the process :
- The standard form of recurrence equation : Write the recurrence equation Standard form , All items are to the left of the equal sign , On the right is
0
0
0 ;
- Number of terms of characteristic equation : determine Number of terms of characteristic equation , And The recurrence equation has the same number of terms ;
- The characteristic equation is sub idempotent : The highest power is Number of terms of characteristic equation
−
1
-1
0
0
0 ;
−1 , Lowest power
- Write There is no coefficient The characteristic equation of ;
- The coefficients of the recursive equation will be deduced bit by bit Copy Into the characteristic equation ;
- Solution characteristic root : take The eigenvalue of the characteristic equation is solved ,
x
=
−
b
±
b
2
−
4
a
c
2
a
x = \cfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
x=2a−b±b2−4ac
- Construct the solution of the recursive equation : structure
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn Linear combination of forms , The linear combination is the solution of the recursive equation ;
Satisfy
H
(
n
)
−
a
1
H
(
n
−
1
)
−
a
2
H
(
n
−
2
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
H(n) - a_1H(n-1) - a_2H(n-2) - \cdots - a_kH(n-k) = 0
H(n)−a1H(n−1)−a2H(n−2)−⋯−akH(n−k)=0 All recursive equations of the formula , All have
c
1
q
1
n
+
c
2
q
2
n
+
⋯
+
c
k
q
k
n
c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n
c1q1n+c2q2n+⋯+ckqkn Formal solution ;
边栏推荐
- 2022爱分析· 国央企数字化厂商全景报告
- Hands on in-depth learning notes (XIV) 3.7 Simple implementation of softmax regression
- MySQL Basics
- How to allow remote connection to MySQL server on Linux system?
- Daily code 300 lines learning notes day 10
- What is the material of sa302grc? American standard container plate sa302grc chemical composition
- Cocos Creator 2. X automatic packaging (build + compile)
- What material is 12cr1movr? Chemical property analysis of pressure vessel steel plate 12cr1movr
- 一台服务器最大并发 tcp 连接数多少?65535?
- 远程办公之如何推进跨部门项目协作 | 社区征文
猜你喜欢
CC2530 common registers for watchdog
建立自己的网站(23)
2022 love analysis · panoramic report of digital manufacturers of state-owned enterprises
CC2530 common registers for ADC single channel conversion
Kotlin学习快速入门(7)——扩展的妙用
Mysql database -dql
Shentong express expects an annual loss of nearly 1billion
Aike AI frontier promotion (7.3)
MySQL single table field duplicate data takes the latest SQL statement
Zebras are recognized as dogs, and Stanford found the reason why AI made mistakes
随机推荐
Thread pool executes scheduled tasks
[mathematical logic] equivalent calculus and reasoning calculus of propositional logic (propositional logic | equivalent calculus | principal conjunctive (disjunctive) paradigm | reasoning calculus)**
Mysql 将逗号隔开的属性字段数据由列转行
13mnnimo5-4 German standard steel plate 13MnNiMo54 boiler steel 13MnNiMo54 chemical properties
[combinatorial mathematics] recursive equation (example of recursive equation 2 Hanoi Tower | example of recursive equation 3 insertion sequencing)
Add color to the interface automation test framework and realize the enterprise wechat test report
CC2530 common registers for timer 1
执行脚本不认\r
CC2530 common registers
What is the pledge pool and how to pledge?
What material is sa537cl2? Analysis of mechanical properties of American standard container plate
Cocos Creator 2. X automatic packaging (build + compile)
Using optimistic lock and pessimistic lock in MySQL to realize distributed lock
香港理工大学|数据高效的强化学习和网络流量动态的自适应最优周界控制
數據分析必備的能力
一台服务器最大并发 tcp 连接数多少?65535?
【剑指 Offer 】57 - II. 和为s的连续正数序列
[2. Basics of Delphi grammar] 2 Object Pascal data type
Recommendation of good books on learning QT programming
What is the material of sa302grc? American standard container plate sa302grc chemical composition