当前位置:网站首页>In 2022, you still can't "low code"?Data science can also play with Low-Code!
In 2022, you still can't "low code"?Data science can also play with Low-Code!
2022-07-29 21:39:00 【ShowMeAI】

作者:韩信子@ShowMeAI
数据分析实战系列:http://www.showmeai.tech/tutorials/40
机器学习实战系列:http://www.showmeai.tech/tutorials/41
本文地址:http://www.showmeai.tech/article-detail/286
声明:版权所有,转载请联系平台与作者并注明出处
收藏ShowMeAI查看更多精彩内容
低代码开发,顾名思义,Refers to the software development process only need to write a small amount of code is enough.与传统开发方式相比,Low-code drastically reduces the effort to write code,This makes it faster、更短的开发时间与更低的成本.
无代码 / Low-code machine learning platform(和库)的兴起,Speed up code development.With the help of these platforms and frameworks,Data scientists are between heavy exploratory research and heavy programming tasks,achieve a better balance.

在本篇内容中,ShowMeAI Summarize the most worthwhile learning for you&使用 Python 低代码机器学习库,Covers the most popular directions in data science——数据分析&simple mining、机器学习、深度学习.
数据分析&simple mining
D-Tale
D-Tale is an easy to use low code Python 库,通过将 Flask Backend written with React Combining with the front-end written,与 Jupyter Notebook 无缝集成,可以查看和分析 Pandas 形态的数据,包括 DataFrame、Series、MultiIndex、DatetimeIndex 和 RangeIndex.

D-Tale 是 SAS 到 Python product of conversion,最初是基于 SAS 的 perl 脚本包装器,现在是基于 Pandas Lightweight data structures Web 客户端.
![]() |
大家可以在D-Tale的官方 Github Check out its detailed tutorial and usage,也可以前往 在线平台 操作体验.

AutoViz
For low-code exploratory data analysis tasks,AutoViz 是 Python Another good choice.在功能方面,It can be used with just one line of code AutoViz Complete automated visualization of any dataset.

AutoViz Ability to combine tasks to determine which features are most important,The information is then drawn and presented by using only those automatically selected elements.而且AutoViz速度极快,Visualization can be done in seconds.
You can check the official one AutoViz 示例 Jupyter Notebook 进行学习.

Lux
Lux ToolPak is a very automatic data analysis visualization tool.No need to do much data preprocessing,It automatically generates a series of candidate charts based on the data,You can choose from them according to actual needs.This greatly reduces the time required to make graphs and the amount of data preprocessing.

大家可以通过 Lux 的官方 GitHub page for more usage details.
![]() |
Pandas-Profiling
pandas-profiling Libraries are automatically targeted pandas DataFrame Format data to generate data analysis reports.

The end result is interactive HTML 报告呈现,包含以下信息:
- 类型推断:字段列的类型
- 要点:类型、唯一值、缺失值
- 分位数统计:包括最小值、Q1、中位数、Q3、最大值、范围、四分位间距
- 描述性统计:包括均值、众数、标准差、总和、中值绝对差、变异系数、峰度、偏度等
- 直方图:分类和数字
- 相关性:Spearman、Pearson 和 Kendall 矩阵
- 缺失值:矩阵、计数、热图和缺失值的树状图
- 文本分析:了解文本数据的类别(大写、空格)、脚本(拉丁文、西里尔文)和块(ASCII)
- 文件和图像分析:提取文件大小、创建日期和尺寸,并扫描截断的图像或包含 EXIF 信息的图像


大家可以在 pandas-profiling 的项目 GitHub 页面获取详细使用方法.

机器学习
PyCaret
PyCaret 是 Python 中的一个开源、低代码机器学习库,可自动执行机器学习工作流.It is also an end-to-end machine learning and model management tool,The experimental cycle can be accelerated exponentially,提升工作开发效率.

与其他开源机器学习库相比,PyCaret It has obvious low-code characteristics,What would otherwise require hundreds of lines of code can be done in just a few lines of code,Especially for intensive experimental iterative processes can be greatly accelerated.PyCaret Essentially, it is encapsulated around multiple machine learning libraries and frameworks,包括大家熟悉的 Scikit-Learn、XGBoost、LightGBM、CatBoost、spaCy、Optuna、Hyperopt 和 Ray 等.

大家可以通过 Pycaret 的 官方文档,官方GitHub,官方教程 Learn more about usage details.
![]() |
深度学习
PyTorch Lightning
PyTorch Lightning is an application in deep learning/神经网络的 Python 低代码库,为 PyTorch Provides a high-level interface.

It has a high performance and lightweight architecture,Constructed in a way that separates research from engineering PyTorch 代码,Make deep learning experiments easier to understand and repeat.Use it to easily build scalable deep learning models on distributed hardware.

官网介绍说,PyTorch Lightning is designed so that people can spend more time on research,rather than spending on engineering.大家可以通过 PyTorch Lightning 的 官方网站 Learn more about usage details.
![]() |
Hugging Face Transformers
Hugging Face Transformers 是 Hugging Face A library of open source deep learning tools.借助 Transformers,You can download state-of-the-art pre-trained models very easily and quickly,Apply it in your own scene,Or retrain on your own data.

Because of the large number of pre-trained models officially provided,We can reduce computational costs(Because there is no need to train from scratch).Rich models cover multiple data types and business sources,包括:
- 文本:对文本进行分类、信息抽取、问答系统、机器翻译、摘要生成,文本生成(覆盖 100 多种语言)
- 图像:图像分类、目标检测和图像分割
- 音频:语音识别和音频分类
![]() |
PyTorch、TensorFlow 和 JAX are three of the most well-known deep learning libraries,transformers All three frameworks are well supported,It is even possible to train a model with three lines of code in one framework,Load the model in another framework and do inference.
大家可以通过 Hugging Face Transformers 的 官方网站 和 GitHub Learn more about usage details.
![]() |
参考资料
- D-Tale 官方 Github: https://github.com/man-group/dtale
- AutoViz 官方示例 Jupyter Notebook: https://github.com/AutoViML/AutoViz/tree/master/Examples
- Lux 官方 GitHub: https://github.com/lux-org/lux
- pandas-profiling 项目 GitHub: https://github.com/ydataai/pandas-profiling
- Pycaret 官方文档: https://pycaret.gitbook.io/
- Pycaret 官方GitHub: https://www.github.com/pycaret/pycaret
- Pycaret 官方教程: https://pycaret.gitbook.io/docs/get-started/tutorials
- PyTorch Lightning 官方网站: https://www.pytorchlightning.ai/
- Hugging Face Transformers 官方网站: https://huggingface.co/
- Hugging Face Transformers GitHub: https://github.com/huggingface/transformers
边栏推荐
- 如何进入董事会:给CIO的十条建议
- Sasser virus source code (ransomware source code)
- 从专业角度分析国内创客教育发展
- RNA的化学修饰原理|Gal-PEG-siRNA|siRNA-S-S-DSPE|siRNA-s-s-PEG|cholesterol-siRNA
- 怎么实现您的个人知识库?
- Durable rules (persistent rules engine) learning notes
- What are the software development modes (software engineering development mode)
- mysql get field comments and get table fields
- Cobaltstrike and BurpSuite desktop shortcut configuration
- Related phrases include usage and collocation (include)
猜你喜欢
1. Promise usage in JS, 2. The concept and usage of closures, 3. The difference between the four methods and areas of object creation, 4. How to declare a class
回归——岭回归
conda虚拟环境 | install 与 list 问题
如何进入董事会:给CIO的十条建议
The younger brother asked: Is the work of a programmer a day’s work of code?
干货!联邦学习中的合作均衡
尿素偶联Urea-siRNA Conjugates|Cyclodextrin-siRNA-β-CD环糊精修饰RNA核酸(解析说明)
Writing Elegant Kotlin Code: Talk About What I Think "Kotlinic"
378. The Kth Smallest Element in an Ordered Matrix
分析少年派2中的Crypto
随机推荐
如何优雅的自定义 ThreadPoolExecutor 线程池
2022了你还不会『低代码』?数据科学也能玩转Low-Code啦!
LeetCode 0144. 二叉树的前序遍历:二叉树必会题
一线技术人应该关注的四种思维能力
WeChat Mini Program 31 Subcontracting Mechanism
MySQL Data Query - Union Query
Hyaluronic acid-siRNA透明质酸修饰核糖核酸|peptide–siRNA 多肽偶连RNA/DNA核酸(齐岳PNA修饰物)
Unity determines whether a string can be converted to float type
Huawei laptop keyboard locked (how does the laptop keyboard light up)
Panorama Tutorial丨How to shoot sunrise and sunset scenes in VR panoramic shooting?
.NET 6.0中使用Identity框架实现JWT身份认证与授权
A dish hold up valuations billions of mt. Pickled fish, can move beyond the edge food safety?
240. Searching 2D Matrix II
Looking for a job - a chat with my cousin
LeetCode 0593. 有效的正方形
【无标题】
刘畊宏男孩女孩看过来!运动数据分析挖掘!(附全套代码和数据集)
PEG-siRNA-PCL|siRNA-PEG-LHRH|MPEG-siRNA 甲氧基聚乙二醇修饰核酸
R语言对airbnb数据nlp文本挖掘、地理、词云可视化、回归GAM模型、交叉验证分析
诺氟沙星-DNA复合物|半乳糖化脂质体-聚阳离子-DNA复合物|注意事项