当前位置:网站首页>Methods of finding various limits
Methods of finding various limits
2022-07-01 19:28:00 【Debroon】
The method of finding various limits
Direct substitution
- lim x − > 3 ( x + 1 ) \lim\limits_{x->3}(x+1) x−>3lim(x+1)
x The limit of is close to 3, Is in the 3 near , Let's go straight to x=3 Plug in x+1 Middle computation , have to 4.
There are some exceptions :
- often Count ∞ = 0 \frac{ constant }{∞}=0 ∞ often Count =0
- ∞ often Count = ∞ \frac{∞}{ constant }=∞ often Count ∞=∞
- Not zero often Count 0 = ∞ \frac{ Nonzero constant }{0}=∞ 0 Not zero often Count =∞
- ∞ > 0 = ∞ ∞^{>0}=∞ ∞>0=∞
- ∞ < 0 = 1 ∞ > 0 = 0 ∞^{<0}=\frac{1}{∞^{>0}}=0 ∞<0=∞>01=0
- n ∞ = 0 , 0 > n > 1 n^{∞}=0,0>n>1 n∞=0,0>n>1
- n ∞ = ∞ , n > 1 n^{∞}=∞,n>1 n∞=∞,n>1
∞ ∞ \frac{∞}{∞} ∞∞ type
Some problems cannot be solved directly , such as ∞ ∞ \frac{∞}{∞} ∞∞ type , It's not a specific number , It's a trend .
- lim x − > ∞ x 100 + x − 1001 + x x 1000 + 2 x \lim\limits_{x->∞}\frac{x^{100}+x^{-1001}+x}{x^{1000}+2x} x−>∞limx1000+2xx100+x−1001+x
solution : Grasp the main trends
In many trends (∞) in , We need to find the biggest trend , Because that is the most influential item .
∞ ∞ \frac{∞}{∞} ∞∞ type , Solving steps :
- Identify trends
- Look at the index , molecular 、 The denominator retains the largest trend
lim x − > ∞ x 100 + x − 1001 + x x 1000 + 2 x \lim\limits_{x->∞}\frac{x^{100}+x^{-1001}+x}{x^{1000}+2x} x−>∞limx1000+2xx100+x−1001+x
- = lim x − > ∞ ∞ 100 + ∞ − 1001 + ∞ ∞ 1000 + 2 ∞ \lim\limits_{x->∞}\frac{∞^{100}+∞^{-1001}+∞}{∞^{1000}+2∞} x−>∞lim∞1000+2∞∞100+∞−1001+∞
- = lim x − > ∞ ∞ + 0 + ∞ ∞ + ∞ \lim\limits_{x->∞}\frac{∞+0+∞}{∞+∞} x−>∞lim∞+∞∞+0+∞
- = lim x − > ∞ x 100 x 1000 \lim\limits_{x->∞}\frac{x^{100}}{x^{1000}} x−>∞limx1000x100
- = lim x − > ∞ 1 x 900 \lim\limits_{x->∞}\frac{1}{x^{900}} x−>∞limx9001
- = lim x − > ∞ 1 ∞ 900 \lim\limits_{x->∞}\frac{1}{∞^{900}} x−>∞lim∞9001
- = 1 ∞ \frac{1}{∞} ∞1
- = 0 0 0
solution : Use lobita's law
0 0 \frac{0}{0} 00 type
lim x − > 0 x s i n x = 0 0 \lim\limits_{x->0}\frac{x}{sinx}=\frac{0}{0} x−>0limsinxx=00
When put x − > 0 x->0 x−>0 After substituting into the formula , Will become 0 0 \frac{0}{0} 00, There will also be no solution .
solution : Replace with equivalent infinitesimal
When a part tends to 0 when , There are five situations :
Case one , x − > 0 , s i n x = x x->0,sin x = x x−>0,sinx=x,
- lim x − > 0 x s i n x = x x = 1 \lim\limits_{x->0}\frac{x}{sinx}=\frac{x}{x}=1 x−>0limsinxx=xx=1
The second case , 1 − c o s Δ 1-cos\Delta 1−cosΔ Variable to 1 2 Δ 2 \frac{1}{2}\Delta^{2} 21Δ2
- lim x − > 0 1 − c o s x x = lim x − > 0 1 2 x 2 x \lim\limits_{x->0}\frac{1-cosx}{x}=\lim\limits_{x->0}\frac{\frac{1}{2}x^{2}}{x} x−>0limx1−cosx=x−>0limx21x2
The nature of the following three cases is the same , Are all forms of substitution .
solution : Use lobita's law
If the unknown x − > 0 、 x − > ∞ x->0、x->∞ x−>0、x−>∞ After substitution , The formula is 0 0 \frac{0}{0} 00 or ∞ ∞ \frac{∞}{∞} ∞∞ , be lim f ( x ) g ( x ) = lim f ′ ( x ) g ′ ( x ) \lim\limits \frac{f(x)}{g(x)}=\lim\limits \frac{f'(x)}{g'(x)} limg(x)f(x)=limg′(x)f′(x), Molecules become derivatives of molecules 、 The denominator becomes the derivative of the denominator .
∞ ⋅ 0 ∞·0 ∞⋅0 type
lim x − > ∞ x ( c o s 1 x − 1 ) \lim\limits_{x->∞}x(cos\frac{1}{x}-1) x−>∞limx(cosx1−1)
- = ∞ · (cos 0 - 1)
- = ∞ · 0
Direct substitution encounters ∞ ⋅ 0 ∞·0 ∞⋅0, There is no result .
We have another solution :
- Find the simplest one a
- Turn this item into 1 1 a \frac{1}{\frac{1}{a}} a11
lim x − > ∞ x ( c o s 1 x − 1 ) \lim\limits_{x->∞}x(cos\frac{1}{x}-1) x−>∞limx(cosx1−1)
- = lim x − > ∞ 1 1 x ( c o s 1 x − 1 ) \lim\limits_{x->∞}\frac{1}{\frac{1}{x}}(cos\frac{1}{x}-1) x−>∞limx11(cosx1−1)
- = lim x − > ∞ c o s 1 x − 1 1 x \lim\limits_{x->∞}\frac{cos\frac{1}{x}-1}{\frac{1}{x}} x−>∞limx1cosx1−1
- = 0 0 \frac{0}{0} 00
Index 、 There are all bases x The limits of
Form like : lim x − > 0 ( 1 + 3 x ) 2 s i n x \lim\limits_{x->0}(1+3x)^{\frac{2}{sinx}} x−>0lim(1+3x)sinx2
hold At the end of Count finger Count base number ^{ Index } At the end of Count finger Count become e finger Count ⋅ l n At the end of Count e^{ Index ·ln base number } e finger Count ⋅ln At the end of Count
lim x − > 0 ( 1 + 3 x ) 2 s i n x = lim x − > 0 e 2 s i n x l n ( 1 + 3 x ) \lim\limits_{x->0}(1+3x)^{\frac{2}{sinx}}=\lim\limits_{x->0}e^{\frac{2}{sinx}ln(1+3x)} x−>0lim(1+3x)sinx2=x−>0limesinx2ln(1+3x)
= lim x − > 0 e 2 l n ( 1 + 3 x ) s i n x \lim\limits_{x->0}e^{\frac{2ln(1+3x)}{sinx}} x−>0limesinx2ln(1+3x)
lim x − > ? e finger Count = e lim x − > ? finger Count \lim\limits_{x->?}e^{ Index }=e^{\lim\limits_{x->?} Index } x−>?lime finger Count =ex−>?lim finger Count
= e lim x − > 0 2 l n ( 1 + 3 x ) s i n x e^{\lim\limits_{x->0}}{\frac{2ln(1+3x)}{sinx}} ex−>0limsinx2ln(1+3x)
Left and right limits of function
It is necessary to find the left and right limits
There are three limits , Only through the most primitive method — Find the left and right limits .
- The first category , Functions are segmented functions with braces , The required limit is the limit at the segment point .

- The second category , Count g ( x ) g^{(x)} g(x) stay g ( x ) g(x) g(x) The denominator of is 0 Limit at .

- The third category , a r c t a n g ( x ) arctan ~g(x) arctan g(x) stay g ( x ) g(x) g(x) The denominator of is 0 Limit at

How to do questions :
- First find the left limit 、 Right limit
- When the left limit = Right limit = Not for ∞ The number of hours , Functional limits exist , And limit = Left limit = Right limit
- When the left limit = Right limit = -∞ perhaps +∞ when , The limit of the function is ∞ / non-existent / There are no limits
- When the left limit != Right limit And Existence is not for ∞ The value of , The function limit does not exist And Not for ∞
边栏推荐
- M91 fast hall measuring instrument - better measurement in a shorter time
- Solution: you can ping others, but others can't ping me
- 制造业SRM管理系统供应商全方位闭环管理,实现采购寻源与流程高效协同
- 赋能「新型中国企业」,SAP Process Automation 落地中国
- 案例分享:QinQ基本组网配置
- 网易游戏,激进出海
- Reading the paper [learning to discretely compose reasoning module networks for video captioning]
- English语法_形容词/副词3级 -注意事项
- sql查询去重统计的方法总结
- Lake shore M91 fast hall measuring instrument
猜你喜欢

Solution of intelligent supply chain management platform in aquatic industry: support the digitalization of enterprise supply chain and improve enterprise management efficiency

【pytorch记录】自动混合精度训练 torch.cuda.amp

一次SQL优化,数据库查询速度提升 60 倍

Lumiprobe free radical analysis h2dcfda instructions

Solidity - 合约结构 - 错误(error)- ^0.8.4版本新增

Lake Shore低温恒温器的氦气传输线

Cdga | if you are engaged in the communication industry, you should get a data management certificate

Lake shore M91 fast hall measuring instrument

Dom4J解析XML、Xpath检索XML

Lumiprobe 细胞成像研究丨PKH26细胞膜标记试剂盒
随机推荐
Solidity - 算术运算的截断模式(unchecked)与检查模式(checked)- 0.8.0新特性
Getting started with kubernetes command (namespaces, pods)
Transform + ASM data
使用环信提供的uni-app Demo,快速实现一对一单聊
11. Users, groups, and permissions (1)
ubuntu14安装MySQL并配置root账户本地与远程访问
Three ways for redis to realize current limiting
Yyds dry inventory ravendb start client API (III)
Gameframework eating guide
[pytorch record] distributed training dataparallel and distributeddataparallel of the model
狼人杀攻略:你当我好骗吗,我们相信谁!
机械设备行业数字化供应链集采平台解决方案:优化资源配置,实现降本增效
Junit单元测试框架详解
Cache problems after app release
transform + asm资料
【英语语法】Unit1 冠词、名词、代词和数词
VBA simple macro programming of Excel
【直播预约】数据库OBCP认证全面升级公开课
Dom4j parsing XML, XPath retrieving XML
The market value evaporated by 74billion yuan, and the big man turned and entered the prefabricated vegetables