当前位置:网站首页>Methods of finding various limits
Methods of finding various limits
2022-07-01 19:28:00 【Debroon】
The method of finding various limits
Direct substitution
- lim x − > 3 ( x + 1 ) \lim\limits_{x->3}(x+1) x−>3lim(x+1)
x The limit of is close to 3, Is in the 3 near , Let's go straight to x=3 Plug in x+1 Middle computation , have to 4.
There are some exceptions :
- often Count ∞ = 0 \frac{ constant }{∞}=0 ∞ often Count =0
- ∞ often Count = ∞ \frac{∞}{ constant }=∞ often Count ∞=∞
- Not zero often Count 0 = ∞ \frac{ Nonzero constant }{0}=∞ 0 Not zero often Count =∞
- ∞ > 0 = ∞ ∞^{>0}=∞ ∞>0=∞
- ∞ < 0 = 1 ∞ > 0 = 0 ∞^{<0}=\frac{1}{∞^{>0}}=0 ∞<0=∞>01=0
- n ∞ = 0 , 0 > n > 1 n^{∞}=0,0>n>1 n∞=0,0>n>1
- n ∞ = ∞ , n > 1 n^{∞}=∞,n>1 n∞=∞,n>1
∞ ∞ \frac{∞}{∞} ∞∞ type
Some problems cannot be solved directly , such as ∞ ∞ \frac{∞}{∞} ∞∞ type , It's not a specific number , It's a trend .
- lim x − > ∞ x 100 + x − 1001 + x x 1000 + 2 x \lim\limits_{x->∞}\frac{x^{100}+x^{-1001}+x}{x^{1000}+2x} x−>∞limx1000+2xx100+x−1001+x
solution : Grasp the main trends
In many trends (∞) in , We need to find the biggest trend , Because that is the most influential item .
∞ ∞ \frac{∞}{∞} ∞∞ type , Solving steps :
- Identify trends
- Look at the index , molecular 、 The denominator retains the largest trend
lim x − > ∞ x 100 + x − 1001 + x x 1000 + 2 x \lim\limits_{x->∞}\frac{x^{100}+x^{-1001}+x}{x^{1000}+2x} x−>∞limx1000+2xx100+x−1001+x
- = lim x − > ∞ ∞ 100 + ∞ − 1001 + ∞ ∞ 1000 + 2 ∞ \lim\limits_{x->∞}\frac{∞^{100}+∞^{-1001}+∞}{∞^{1000}+2∞} x−>∞lim∞1000+2∞∞100+∞−1001+∞
- = lim x − > ∞ ∞ + 0 + ∞ ∞ + ∞ \lim\limits_{x->∞}\frac{∞+0+∞}{∞+∞} x−>∞lim∞+∞∞+0+∞
- = lim x − > ∞ x 100 x 1000 \lim\limits_{x->∞}\frac{x^{100}}{x^{1000}} x−>∞limx1000x100
- = lim x − > ∞ 1 x 900 \lim\limits_{x->∞}\frac{1}{x^{900}} x−>∞limx9001
- = lim x − > ∞ 1 ∞ 900 \lim\limits_{x->∞}\frac{1}{∞^{900}} x−>∞lim∞9001
- = 1 ∞ \frac{1}{∞} ∞1
- = 0 0 0
solution : Use lobita's law
0 0 \frac{0}{0} 00 type
lim x − > 0 x s i n x = 0 0 \lim\limits_{x->0}\frac{x}{sinx}=\frac{0}{0} x−>0limsinxx=00
When put x − > 0 x->0 x−>0 After substituting into the formula , Will become 0 0 \frac{0}{0} 00, There will also be no solution .
solution : Replace with equivalent infinitesimal
When a part tends to 0 when , There are five situations :
Case one , x − > 0 , s i n x = x x->0,sin x = x x−>0,sinx=x,
- lim x − > 0 x s i n x = x x = 1 \lim\limits_{x->0}\frac{x}{sinx}=\frac{x}{x}=1 x−>0limsinxx=xx=1
The second case , 1 − c o s Δ 1-cos\Delta 1−cosΔ Variable to 1 2 Δ 2 \frac{1}{2}\Delta^{2} 21Δ2
- lim x − > 0 1 − c o s x x = lim x − > 0 1 2 x 2 x \lim\limits_{x->0}\frac{1-cosx}{x}=\lim\limits_{x->0}\frac{\frac{1}{2}x^{2}}{x} x−>0limx1−cosx=x−>0limx21x2
The nature of the following three cases is the same , Are all forms of substitution .
solution : Use lobita's law
If the unknown x − > 0 、 x − > ∞ x->0、x->∞ x−>0、x−>∞ After substitution , The formula is 0 0 \frac{0}{0} 00 or ∞ ∞ \frac{∞}{∞} ∞∞ , be lim f ( x ) g ( x ) = lim f ′ ( x ) g ′ ( x ) \lim\limits \frac{f(x)}{g(x)}=\lim\limits \frac{f'(x)}{g'(x)} limg(x)f(x)=limg′(x)f′(x), Molecules become derivatives of molecules 、 The denominator becomes the derivative of the denominator .
∞ ⋅ 0 ∞·0 ∞⋅0 type
lim x − > ∞ x ( c o s 1 x − 1 ) \lim\limits_{x->∞}x(cos\frac{1}{x}-1) x−>∞limx(cosx1−1)
- = ∞ · (cos 0 - 1)
- = ∞ · 0
Direct substitution encounters ∞ ⋅ 0 ∞·0 ∞⋅0, There is no result .
We have another solution :
- Find the simplest one a
- Turn this item into 1 1 a \frac{1}{\frac{1}{a}} a11
lim x − > ∞ x ( c o s 1 x − 1 ) \lim\limits_{x->∞}x(cos\frac{1}{x}-1) x−>∞limx(cosx1−1)
- = lim x − > ∞ 1 1 x ( c o s 1 x − 1 ) \lim\limits_{x->∞}\frac{1}{\frac{1}{x}}(cos\frac{1}{x}-1) x−>∞limx11(cosx1−1)
- = lim x − > ∞ c o s 1 x − 1 1 x \lim\limits_{x->∞}\frac{cos\frac{1}{x}-1}{\frac{1}{x}} x−>∞limx1cosx1−1
- = 0 0 \frac{0}{0} 00
Index 、 There are all bases x The limits of
Form like : lim x − > 0 ( 1 + 3 x ) 2 s i n x \lim\limits_{x->0}(1+3x)^{\frac{2}{sinx}} x−>0lim(1+3x)sinx2
hold At the end of Count finger Count base number ^{ Index } At the end of Count finger Count become e finger Count ⋅ l n At the end of Count e^{ Index ·ln base number } e finger Count ⋅ln At the end of Count
lim x − > 0 ( 1 + 3 x ) 2 s i n x = lim x − > 0 e 2 s i n x l n ( 1 + 3 x ) \lim\limits_{x->0}(1+3x)^{\frac{2}{sinx}}=\lim\limits_{x->0}e^{\frac{2}{sinx}ln(1+3x)} x−>0lim(1+3x)sinx2=x−>0limesinx2ln(1+3x)
= lim x − > 0 e 2 l n ( 1 + 3 x ) s i n x \lim\limits_{x->0}e^{\frac{2ln(1+3x)}{sinx}} x−>0limesinx2ln(1+3x)
lim x − > ? e finger Count = e lim x − > ? finger Count \lim\limits_{x->?}e^{ Index }=e^{\lim\limits_{x->?} Index } x−>?lime finger Count =ex−>?lim finger Count
= e lim x − > 0 2 l n ( 1 + 3 x ) s i n x e^{\lim\limits_{x->0}}{\frac{2ln(1+3x)}{sinx}} ex−>0limsinx2ln(1+3x)
Left and right limits of function
It is necessary to find the left and right limits
There are three limits , Only through the most primitive method — Find the left and right limits .
- The first category , Functions are segmented functions with braces , The required limit is the limit at the segment point .

- The second category , Count g ( x ) g^{(x)} g(x) stay g ( x ) g(x) g(x) The denominator of is 0 Limit at .

- The third category , a r c t a n g ( x ) arctan ~g(x) arctan g(x) stay g ( x ) g(x) g(x) The denominator of is 0 Limit at

How to do questions :
- First find the left limit 、 Right limit
- When the left limit = Right limit = Not for ∞ The number of hours , Functional limits exist , And limit = Left limit = Right limit
- When the left limit = Right limit = -∞ perhaps +∞ when , The limit of the function is ∞ / non-existent / There are no limits
- When the left limit != Right limit And Existence is not for ∞ The value of , The function limit does not exist And Not for ∞
边栏推荐
- Dlib+Opencv库实现疲劳检测
- DTD建模
- 微信公众号开发相关流程及功能介绍
- 前4A高管搞代运营,拿下一个IPO
- 组队学习! 14天鸿蒙设备开发“学练考”实战营限时免费加入!
- Solidity - 合约结构 - 错误(error)- ^0.8.4版本新增
- Technical secrets of ByteDance data platform: implementation and optimization of complex query based on Clickhouse
- Contos 7 搭建sftp之创建用户、用户组以及删除用户
- 原生js打造日程表-支持鼠标滚轮滚动选择月份-可以移植到任何框架中
- Appgallery connect scenario development practice - image storage and sharing
猜你喜欢

B2B e-commerce platform solution for fresh food industry to improve the standardization and transparency of enterprise transaction process

Bao, what if the O & M 100+ server is a headache? Use Xingyun housekeeper!

Superoptimag superconducting magnet system - SOM, Som2 series

XML syntax, constraints

C-end dream is difficult to achieve. What does iFLYTEK rely on to support the goal of 1billion users?

求各种极限的方法

任务:拒绝服务DoS

Enabling "new Chinese enterprises", SAP process automation landing in China

Lake Shore—OptiMag 超导磁体系统 — OM 系列

白盒加密技术浅理解
随机推荐
Lake Shore低温恒温器的氦气传输线
华为游戏初始化init失败,返回错误码907135000
Today, with the popularity of micro services, how does service mesh exist?
Cache problems after app release
市值蒸发740亿,这位大佬转身杀入预制菜
Solidity - 算术运算的截断模式(unchecked)与检查模式(checked)- 0.8.0新特性
Lumiprobe phosphide hexaethylene phosphide specification
Transform + ASM data
Solidity - contract structure - error - ^0.8.4 NEW
PostgreSQL varchar[] array type operation
Chinese and English instructions human soluble advanced glycation end products receptor (sRAGE) ELISA Kit
The former 4A executives engaged in agent operation and won an IPO
论文阅读【Learning to Discretely Compose Reasoning Module Networks for Video Captioning】
Solution: you can ping others, but others can't ping me
Love business in Little Red Book
线程的并行、并发、生命周期
DTD建模
水产行业智能供应链管理平台解决方案:支撑企业供应链数字化,提升企业管理效益
Nacos configuration file publishing failed, please check whether the parameters are correct solution
Dom4J解析XML、Xpath检索XML