当前位置:网站首页>20211018 some special matrices
20211018 some special matrices
2022-06-13 09:03:00 【What's my name】
Unitary matrix (Unitary Matrix): A H A = A A H = I A^HA=AA^H=I AHA=AAH=I, It is called unitary matrix ( Unitary matrix 、 Unitary matrix ).
Orthogonal matrix : If the elements of a unitary matrix are all real numbers , be called Orthogonal matrix ( Orthogonal matrices are all positive numbers ). A T A = A A T = I A^TA=AA^T=I ATA=AAT=I.
Real symmetric matrix : All elements are real numbers , A T = A A^T=A AT=A.
Real antisymmetric matrix : All elements are real numbers , A T = − A A^T=-A AT=−A.
Hermite matrix (Hermitian Matrix): Diagonal element real number , Non diagonal lines can be real or imaginary , A H = A A^H=A AH=A. Eigenvalues must be real numbers .
Normal matrix (Normal Matrix): A T A = A A T A^TA=AA^T ATA=AAT, Is called a normal matrix .
arbitrarily Normal matrix Can pass through a Unitary transformation Then it becomes a diagonal matrix , Conversely, all matrices that can be transformed into diagonal matrices after a unitary transformation are normal matrices .
Unitary transformation :
Schur Theorem : Theorem 1.41 (1) set up A ∈ C n × n \boldsymbol{A} \in \mathbf{C}^{n \times n} A∈Cn×n The eigenvalue of is λ 1 , ⋅ λ 2 , ⋯ , λ n \lambda_{1}, \cdot \lambda_{2}, \cdots, \lambda_{n} λ1,⋅λ2,⋯,λn, Then deposit In unitary matrix P \boldsymbol{P} P, bring
P − 1 A P = P H A P = [ λ 1 ∗ ⋯ ∗ λ 2 ⋱ ⋮ ⋱ ∗ λ n ] \boldsymbol{P}^{-1} \boldsymbol{A P}=\boldsymbol{P}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{P}=\left[\begin{array}{lllc} \lambda_{1} & * & \cdots & * \\ & \lambda_{2} & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_{n} \end{array}\right] P−1AP=PHAP=⎣⎢⎢⎢⎡λ1∗λ2⋯⋱⋱∗⋮∗λn⎦⎥⎥⎥⎤
(2) set up A ∈ R n × n \boldsymbol{A} \in \mathbf{R}^{n \times n} A∈Rn×n The eigenvalue of is λ 1 , λ 2 , ⋯ , λ n \lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} λ1,λ2,⋯,λn, And λ i ∈ R ( i = 1 \lambda_{i} \in \mathbf{R}(i=1 λi∈R(i=1, 2 , ⋯ , n ) 2, \cdots, n) 2,⋯,n), Then there is an orthogonal matrix Q Q Q, bring
Q − 1 A Q = Q T A Q = [ λ 1 ∗ ⋯ ∗ λ 2 ⋱ ⋮ ⋱ ∗ λ n ] \boldsymbol{Q}^{-1} \boldsymbol{A} \boldsymbol{Q}=\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{Q}=\left[\begin{array}{lllc} \lambda_{1} & * & \cdots & * \\ & \lambda_{2} & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_{n} \end{array}\right] Q−1AQ=QTAQ=⎣⎢⎢⎢⎡λ1∗λ2⋯⋱⋱∗⋮∗λn⎦⎥⎥⎥⎤
Theorem 1.42 (1) set up A ∈ C n × n \boldsymbol{A} \in \mathbf{C}^{n \times n} A∈Cn×n, be A \boldsymbol{A} A The necessary and sufficient of unitary similarity to diagonal matrix On the condition that A \boldsymbol{A} A Normal matrix ;
(2) set up A ∈ R n × n \boldsymbol{A} \in \mathbf{R}^{n \times n} A∈Rn×n, And A \boldsymbol{A} A The eigenvalues of are all real numbers , be A \boldsymbol{A} A Orthogonality is similar to pairing The necessary and sufficient condition for an angular matrix is A \boldsymbol{A} A Normal matrix .
边栏推荐
- final 原理
- Detailed explanation of C language callback function
- Jfinal and swagger integration
- 【QNX Hypervisor 2.2 用户手册】4.5.1 构建QNX Guest
- Uni app subcontracting loading and optimization
- Tensorflow1.14 corresponds to numpy version
- CentOS installing MySQL and setting up remote access
- Redirect vulnerability analysis of network security vulnerability analysis
- Tutorial (5.0) 03 Security policy * fortiedr * Fortinet network security expert NSE 5
- 20211020 段院士全驱系统
猜你喜欢
Redis fuzzy query batch deletion
File upload JS
QT multithreaded TCP server
教程篇(5.0) 04. Fortint云服务和脚本 * FortiEDR * Fortinet 网络安全专家 NSE 5
Message Oriented Middleware
Neo4j - CQL使用
Uni app subcontracting loading and optimization
【 sécurité 】 comment devenir ingénieur de sécurité de 0 à 1 contre - attaque pour la Fondation zéro
Installation of sonarqube code quality management platform (to be continued)
Docker installing MySQL local remote connection docker container MySQL
随机推荐
CentOS installing MySQL and setting up remote access
【QNX Hypervisor 2.2 用户手册】4.5 构建Guest
Vscode plug in
20211104 为什么矩阵的迹等于特征值之和,为什么矩阵的行列式等于特征值之积
Knowledge points related to system architecture 1
Onnx crop intermediate node
What exactly is Huawei cloud desktop saying when it says "smooth"?
Sonar scan ignores the specified file
Neo4j - CQL use
You don't know the usage of stringstream
15. copy constructor
20211020 段院士全驱系统
GBase 8a V95与V86压缩策略类比
GBase 8a磁盘问题及处理
Void* pointer
20211108 能观能控,可稳可测
Tutorial (5.0) 01 Product introduction and installation * fortiedr * Fortinet network security expert NSE 5
【网络安全】SQL注入新思维之webshell提权
Uni app subcontracting loading and optimization
output. Interpretation of topk() function