当前位置:网站首页>数学知识整理:极值&最值,驻点,拉格朗日乘子
数学知识整理:极值&最值,驻点,拉格朗日乘子
2022-06-13 00:53:00 【UQI-LIUWJ】
1 极值
1.1 驻点
- 如果函数z=f(x,y)在点
处有极值,且偏微商存在,那么z=f(x,y)在
处的偏微商必为0,即
- 称满足
的点
为函数z=f(x,y)的驻点,也称为平衡点 - z=f(x,y)的极值点必然是它的驻点或者偏微商不存在的点;但是驻点不一定是极值点
- 比如z=f(x,y)=xy,在(0,0)处显然有
,也即(0,0)是f(x,y)的一个驻点,但是(0,0)并不是函数的极值点(只是一个鞍点)
1.1.1 驻点是极值点的充分条件
- 比如z=f(x,y)=xy,在(0,0)处显然有
设z=f(x,y)在定义域内一点
处有二阶连续偏微商,且
我们记
,
,则
- 当Δ>0,A>0时,f(x,y)在 点
处有极小值 当Δ>0,A<0时,f(x,y)在 点
处有极大值当Δ<0时, f(x,y)在 点
处无极值
2 最值
求函数在区域D上的最值的一般方法是,先求出函数在区域D内部的极值,在于函数在D的边界上的最值进行比较。

对于有些问题而言,我们可以知道函数最值存在,且在区域D的内部。如果此时函数在区域D内偏微分存在,且又只有唯一的驻点
,那此驻点为最值
3 条件极值
求函数z=f(x,y)满足条件
的条件极值
3.1 将条件极值化为普通极值
从条件方程
中解出y=g(x),代入z=f(x,y)中
3.2 拉格朗日乘子
(1)写出辅助函数
(2)x,y,λ满足的方程组

(3)由上述方程组解出的(x,y)就是可能取条件极值的点
求m元函数+n个约束条件同理
边栏推荐
- 草在结种子了
- 阿姨学代码续集:能力吊打大批程序员
- Unitywebrequest asynchronous Download
- [virtual machine] notes on virtual machine environment problems
- (01). Net Maui actual construction project
- Common skills of quantitative investment - index part 2: detailed explanation of BOL (Bollinger line) index, its code implementation and drawing
- What is meebits? A brief explanation
- 高阶极点对于波形的影响
- MySQL lpad() and rpad() concatenate string functions with specified length
- Tree - delete all leaf nodes
猜你喜欢

Opencv desaturation

今日睡眠质量记录74分

.net core 抛异常对性能影响的求证之路

Kotlin coroutine suspend function suspend keyword

Development notes of Mongoose
![[sca-cnn interpretation] spatial and channel wise attention](/img/4b/bdcdab17d531481bf0222a96ace065.png)
[sca-cnn interpretation] spatial and channel wise attention

Kotlin coroutine withcontext switch thread

MySQL异常:com.mysql.jdbc.PacketTooBigException: Packet for query is too large(4223215 > 4194304)

Introduction to ROS from introduction to mastery (zero) tutorial

What is the difference between pytorch and tensorflow?
随机推荐
3623. Merge two ordered arrays
[network protocol] problems and solutions in the use of LwIP
[sca-cnn interpretation] spatial and channel wise attention
How many steps are appropriate for each cycle of deep learning?
[virtual machine] notes on virtual machine environment problems
How to choose stocks? Which indicator strategy is reliable? Quantitative analysis and comparison of DBCD, ROC, vroc, Cr and psy index strategy income
[JS component] customize the right-click menu
【北亚服务器数据恢复】虚拟机文件丢失导致Hyper-V服务瘫痪的数据恢复案例
Et5.0 configuring Excel
ROS2之OpenCV人脸识别foxy~galactic~humble
[virtual machine] notes on virtual machine environment problems
In / out / inout details of MySQL stored procedures
How to choose stocks? Which indicator strategy is reliable? Quantitative analysis and comparison of strategic benefits of ASI, VR, arbr, DPO and trix indicators
[JS component] dazzle radio box and multi box
What is meebits? A brief explanation
How to solve the duplication problem when MySQL inserts data in batches?
ROS从入门到精通(零) 教程导读
Kotlin 协程,job的生命周期
How to determine whether T is a value type in a generic type or a reference class- How to determine whether T is a value type or reference class in generic?
【服务器数据恢复】存储服务器之间迁移数据时数据丢失恢复成功案例
,也即(0,0)是f(x,y)的一个驻点,但是(0,0)并不是函数的极值点(只是一个鞍点)