当前位置:网站首页>Visualization of provincial GDP with CSV metabase processing
Visualization of provincial GDP with CSV metabase processing
2022-06-30 15:39:00 【Nanshi garlic ah Xun】
GDP.csv
province,2016y,2015y,2014y,2013y,2012y,2011y,2010y,2009y,2008y,2007y,2006y,2005y,2004y,2003y,2002y,2001y,2000y,1999y,1998y,1997y
The Beijing municipal ,25669.13,23014.59,21330.83,19800.81,17879.4,16251.93,14113.58,12153.03,11115,9846.81,8117.78,6969.52,6033.21,5007.21,4315,3707.96,3161.66,2678.82,2377.18,2077.09
tianjin ,17885.39,16538.19,15726.93,14442.01,12893.88,11307.28,9224.46,7521.85,6719.01,5252.76,4462.74,3905.64,3110.97,2578.03,2150.76,1919.09,1701.88,1500.95,1374.6,1264.63
Hebei Province ,32070.45,29806.11,29421.15,28442.95,26575.01,24515.76,20394.26,17235.48,16011.97,13607.32,11467.6,10012.11,8477.63,6921.29,6018.28,5516.76,5043.96,4514.19,4256.01,3953.78
Shanxi Province ,13050.41,12766.49,12761.49,12665.25,12112.83,11237.55,9200.86,7358.31,7315.4,6024.45,4878.61,4230.53,3571.37,2855.23,2324.8,2029.53,1845.72,1667.1,1611.08,1476
Inner Mongolia ,18128.1,17831.51,17770.19,16916.5,15880.58,14359.88,11672,9740.25,8496.2,6423.18,4944.25,3905.03,3041.07,2388.38,1940.94,1713.81,1539.12,1379.31,1262.54,1153.51
Liaoning Province ,22246.9,28669.02,28626.58,27213.22,24846.43,22226.7,18457.27,15212.49,13668.58,11164.3,9304.52,8047.26,6672,6002.54,5458.22,5033.08,4669.06,4171.69,3881.73,3582.46
Jilin Province ,14776.8,14063.13,13803.14,13046.4,11939.24,10568.83,8667.58,7278.75,6426.1,5284.69,4275.12,3620.27,3122.01,2662.08,2348.54,2120.35,1951.51,1672.96,1577.05,1464.34
Heilongjiang Province ,15386.09,15083.67,15039.38,14454.91,13691.58,12582,10368.6,8587,8314.37,7104,6211.8,5513.7,4750.6,4057.4,3637.2,3390.1,3151.4,2866.3,2774.4,2667.5
Shanghai ,28178.65,25123.45,23567.7,21818.15,20181.72,19195.69,17165.98,15046.45,14069.86,12494.01,10572.24,9247.66,8072.83,6694.23,5741.03,5210.12,4771.17,4188.73,3801.09,3438.79
Jiangsu Province ,77388.28,70116.38,65088.32,59753.37,54058.22,49110.27,41425.48,34457.3,30981.98,26018.48,21742.05,18598.69,15003.6,12442.87,10606.85,9456.84,8553.69,7697.82,7199.95,6680.34
Zhejiang Province ,47251.36,42886.49,40173.03,37756.59,34665.33,32318.85,27722.31,22990.35,21462.69,18753.73,15718.47,13417.68,11648.7,9705.02,8003.67,6898.34,6141.03,5443.92,5052.62,4686.11
Anhui Province ,24407.62,22005.63,20848.75,19229.34,17212.05,15300.65,12359.33,10062.82,8851.66,7360.92,6112.5,5350.17,4759.3,3923.11,3519.72,3246.71,2902.09,2712.34,2542.96,2347.32
Fujian Province ,28810.58,25979.82,24055.76,21868.49,19701.78,17560.18,14737.12,12236.53,10823.01,9248.53,7583.85,6554.69,5763.35,4983.67,4467.55,4072.85,3764.54,3414.19,3159.91,2870.9
Jiangxi Province ,18499,16723.78,15714.63,14410.19,12948.88,11702.82,9451.26,7655.18,6971.05,5800.25,4820.53,4056.76,3456.7,2807.41,2450.48,2175.68,2003.07,1853.65,1719.87,1605.77
Shandong Province ,68024.49,63002.33,59426.59,55230.32,50013.24,45361.85,39169.92,33896.65,30933.28,25776.91,21900.19,18366.87,15021.84,12078.15,10275.5,9195.04,8337.47,7493.84,7021.35,6537.07
Henan province ,40471.79,37002.16,34938.24,32191.3,29599.31,26931.03,23092.36,19480.46,18018.53,15012.46,12362.79,10587.42,8553.79,6867.7,6035.48,5533.01,5052.99,4517.94,4308.24,4041.09
Hubei province ,32665.38,29550.19,27379.22,24791.83,22250.45,19632.26,15967.61,12961.1,11328.92,9333.4,7617.47,6590.19,5633.24,4757.45,4212.82,3880.53,3545.39,3229.29,3114.02,2856.47
Hunan province ,31551.37,28902.21,27037.32,24621.67,22154.23,19669.56,16037.96,13059.69,11555,9439.6,7688.67,6596.1,5641.94,4659.99,4151.54,3831.9,3551.49,3214.54,3025.53,2849.27
Guangdong province, ,80854.91,72812.55,67809.85,62474.79,57067.92,53210.28,46013.06,39482.56,36796.71,31777.01,26587.76,22557.37,18864.62,15844.64,13502.42,12039.25,10741.25,9250.68,8530.88,7774.53
guangxi ,18317.64,16803.12,15672.89,14449.9,13035.1,11720.87,9569.85,7759.16,7021,5823.41,4746.16,3984.1,3433.5,2821.11,2523.73,2279.34,2080.04,1971.41,1911.3,1817.25
Hainan ,4053.2,3702.76,3500.72,3177.56,2855.54,2522.66,2064.5,1654.21,1503.06,1254.17,1065.67,918.75,819.66,713.96,642.73,579.17,526.82,476.67,442.13,411.16
Chongqing City ,17740.59,15717.27,14262.6,12783.26,11409.6,10011.37,7925.58,6530.01,5793.66,4676.13,3907.23,3467.72,3034.58,2555.72,2232.86,1976.86,1791,1663.2,1602.38,1509.75
Sichuan Province ,32934.54,30053.1,28536.66,26392.07,23872.8,21026.68,17185.48,14151.28,12601.23,10562.39,8690.24,7385.1,6379.63,5333.09,4725.01,4293.49,3928.2,3649.12,3474.09,3241.47
Guizhou Province ,11776.73,10502.56,9266.39,8086.86,6852.2,5701.84,4602.16,3912.68,3561.56,2884.11,2338.98,2005.42,1677.8,1426.34,1243.43,1133.27,1029.92,937.5,858.39,805.79
Yunnan Province ,14788.42,13619.17,12814.59,11832.31,10309.47,8893.12,7224.18,6169.75,5692.12,4772.52,3988.14,3462.73,3081.91,2556.02,2312.82,2138.31,2011.19,1899.82,1831.33,1676.17
Tibet ,1151.41,1026.39,920.83,815.67,701.03,605.83,507.46,441.36,394.85,341.43,290.76,248.8,220.34,185.09,162.04,139.16,117.8,105.98,91.5,77.24
Shaanxi Province ,19399.59,18021.86,17689.94,16205.45,14453.68,12512.3,10123.48,8169.8,7314.58,5757.29,4743.61,3933.72,3175.58,2587.72,2253.39,2010.62,1804,1592.64,1458.4,1363.6
Gansu Province ,7200.37,6790.32,6836.82,6330.69,5650.2,5020.37,4120.75,3387.56,3166.82,2703.98,2277.35,1933.98,1688.49,1399.83,1232.03,1125.37,1052.88,956.32,887.67,793.57
Qinghai Province ,2572.49,2417.05,2303.32,2122.06,1893.54,1670.44,1350.43,1081.27,1018.62,797.35,648.5,543.32,466.1,390.2,340.65,300.13,263.68,239.38,220.92,202.79
ningxia ,3168.59,2911.77,2752.1,2577.57,2341.29,2102.21,1689.65,1353.31,1203.92,919.11,725.9,612.61,537.11,445.36,377.16,337.44,295.02,264.58,245.44,224.59
xinjiang ,9649.7,9324.8,9273.46,8443.84,7505.31,6610.05,5437.47,4277.05,4183.21,3523.16,3045.26,2604.19,2209.09,1886.35,1612.65,1491.6,1363.56,1163.17,1106.95,1039.85
Line graph Y Axis log effect , Set the points used by each province with different shapes , Data clings to Y Axis . The transverse zoom Zoom bar below , Slide to the left .
""" Line graph + zoom The slider is on the left , logY effect Line graph Y Axis log effect , Set the points used by each province with different shapes , Data clings to Y Axis . The transverse zoom Zoom bar below , Slide to the left . """
import pandas as pd
import numpy as np
from pyecharts.charts import Line
from pyecharts import options as opts
df = pd.read_csv('gdp.csv')
d = df.iloc[[0,14,18,15,19,27],0:].set_index("province")
d = d.T.sort_index()
x = d.index.tolist() #X Axis
y = np.array(d.T) #Y Axis
City = d.columns.values.tolist() # City
symbol=['circle','rect','roundRect','triangle','diamond', 'pin', 'arrow']
# Line graph Left slider orient='vertical'
def show_line():
line = Line().add_xaxis(x)
for i in range(len(City)):
line.add_yaxis(City[i],list(y[i]),is_smooth=True,symbol=symbol[i],symbol_size=10)
line.set_global_opts(title_opts=opts.TitleOpts(title=" Linear slider "),
xaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
is_scale=False,
boundary_gap=False,
),
datazoom_opts=opts.DataZoomOpts(pos_left = True,range_start=0),
yaxis_opts=opts.AxisOpts(type_="log",is_scale=True))
return line
show_line().render_notebook()
(1)Timeline Wheel planting : Horizontal histogram , Press GDP Sort , The one with the most value is on , Rotation year
#GDP Data access Beijing 、 Shandong 、 guangdong 、 Henan 、 guangxi 、 gansu Six provinces , All years
#(1)Timeline Wheel planting : Horizontal histogram , Press GDP Sort , The one with the most value is on , Rotation year
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import *
# get data
data = pd.read_csv(r'gdp.csv')
#print(data)
data=data.set_index('province')
#print(data)
lieming=data.columns.tolist()
#print(lieming)
def timeline_bar1() -> Timeline:
city=[' The Beijing municipal ',' Shandong Province ',' Guangdong province, ',' Henan province ',' guangxi ',' Gansu Province ']
t1 = Timeline()
for i in lieming:
city =data.loc[[' The Beijing municipal ',' Shandong Province ',' Guangdong province, ',' Henan province ',' guangxi ',' Gansu Province '],:].sort_values(i).index.values.tolist()
year1=data.loc[[' The Beijing municipal ',' Shandong Province ',' Guangdong province, ',' Henan province ',' guangxi ',' Gansu Province '],:].sort_values(i)[i].values.tolist()
bar = (
Bar()
.add_xaxis(city)# Add the same... Every time X Axis
.add_yaxis("GDP",year1)
.set_global_opts(title_opts=opts.TitleOpts("GDP{}".format(i)))
.reversal_axis()
)
t1.add(bar, "{}".format(i))
return t1
timeline_bar1().render_notebook()
start-up metabase
java -jar metabase.jar
Import a good database 

select tt.name,count(category_id) as ' total '
from
(
select category.name,film_category.film_id,film_category.category_id
from film_category
left join category ON film_category.`category_id` = category.`category_id`
) as tt
group by category_id;

边栏推荐
- Talk about why I started technical writing
- Four solutions to cross domain problems
- Experiment of the planning group of the West University of technology -- pipeline CPU and data processing Adventure
- Bucket sorting (C language)
- 1082 read number in Chinese (25 points)
- Review 2021, embrace change and live up to Shaohua
- Matlab judge palindrome number (only numbers)
- Xiao Sha's pain (thinking problem)
- linux下新建Mysql数据库并导入sql文件
- 1025 pat ranking (25 points)
猜你喜欢

How to do a good job in high concurrency system design? I have summarized three points

The principle of fluent 2 rendering and how to realize video rendering
![[matlab] 3D drawing summary](/img/57/05156340ccdd79b866c4df955b3713.jpg)
[matlab] 3D drawing summary

Technology sharing | how to quickly realize audio and video online calls

Matlab function for limit, definite integral, first-order derivative, second-order derivative (classic examples)

topic: Privacy, Deception and Device Abuse

Oculus quest2 | unity configures the oculus quest2 development environment and packages an application for real machine testing

What would you choose between architecture optimization and business iteration?

开源 STM32 USB-CAN项目

Pycharm----xx. So cannot open shared object file problem solving
随机推荐
Guada digital analog
4.3 variables and assignments
N - Is There A Second Way Left? (minimum spanning tree, Kruskal)
Start your global dynamic acceleration journey of Web services in three steps
Single cycle CPU of the design group of West University of Technology
1077 kuchiguse (20 points)
[matlab] 2D drawing summary
1062 talent and virtue (25 points)
1066 root of AVL tree (25 points)
剑指 Offer II 080. 含有 k 个元素的组合 回溯
Summary of system stability construction practice
Scattered knowledge of C language (unfinished)
How does sd-rtn ensure the high availability of RTE services after infrastructure failure
Operator%
(Niuke) BFS
Soap comparison result file description
Don't fight for big companies
Flask Sqlalchemy - automatically export the table model (flask sqlacodegen) & no single primary key problem ---orm (8)
[matlab] 3D drawing summary
终于看懂科学了!200张图领略人类智慧的巅峰