当前位置:网站首页>JUC(三):锁核心类AQS ing

JUC(三):锁核心类AQS ing

2022-08-03 11:36:00 学到的心态

一. AbstractQueuedSynchronizer简介

用来构建锁和同步器的框架,使用AQS能简单且高效的构造出大量的构造器,比如ReentrantLock,Semaphore。当然我们也可以利用AQS轻松构建出符合自己需求的同步器。

1. AQS 核心思想

核心思想是,如果被请求的共享资源空闲,则将当前请求的线程设置为有效的工作线程,并锁定资源。如果资源被占用,那就需要一套线程堵塞以及被唤醒时锁分配的机制(CLH),即将线程加入到队列中。

AQS是将线程封装成CLH锁队列的一个节点(Node)来实现锁的分配。

AQS使用一个int成员变量表示同步状态,通过FIFO队列来完成排队,AQS通过CAS完成对状态的修改。

private volatile int state;//共享变量,使用volatile修饰保证线程可见性

//返回同步状态的当前值
protected final int getState() {
      
        return state;
}
 // 设置同步状态的值
protected final void setState(int newState) {
     
        state = newState;
}
//原子地(CAS操作)将同步状态值设置为给定值update如果当前同步状态的值等于expect(期望值)
protected final boolean compareAndSetState(int expect, int update) {
    
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}

 

2. AQS 对资源的共享方式

AQS定义两种资源共享方式

  • Exclusive(独占):只有一个线程能执行,如ReentrantLock。又分为公平锁和非公平锁:
    • 公平锁:按照队列中的排队顺序去获取锁
    • 非公平锁:无视队列顺序,谁抢到就是谁的
  • share(共享):多个线程可同时执行,如Semaphore/CountDownLatch。

不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源 state 的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在上层已经帮我们实现好了。

 
 

二. AbstractQueuedSynchronizer数据结构

底层数据结构使用CLH队列(一个虚拟的双向队列:虚拟:即不存在队列实例,仅存在节点之间的关联关系)。

AQS是将(请求资源的)线程封装成CLH锁队列的一个节点来实现锁的分配。

  • sync queue 同步队列,使用的是双向链表,其中head节点主要用作后续的调度
  • condition queue 不是必须的,是一个单向链表,只有使用condition时才会使用此单向链表。

在这里插入图片描述
 
 

三. AbstractQueuedSynchronizer源码分析

内部类 - Node类

static final class Node {
    
    // 模式,分为共享与独占
    // 共享模式
    static final Node SHARED = new Node();
    // 独占模式
    static final Node EXCLUSIVE = null;        
    // 结点状态
    // CANCELLED,值为1,表示当前的线程被取消
    // SIGNAL,值为-1,表示当前节点的后继节点包含的线程需要运行,也就是unpark
    // CONDITION,值为-2,表示当前节点在等待condition,也就是在condition队列中
    // PROPAGATE,值为-3,表示当前场景下后续的acquireShared能够得以执行
    // 值为0,表示当前节点在sync队列中,等待着获取锁
    static final int CANCELLED =  1;
    static final int SIGNAL    = -1;
    static final int CONDITION = -2;
    static final int PROPAGATE = -3;        

    // 结点状态
    volatile int waitStatus;        
    // 前驱和后继
    volatile Node prev;    
    volatile Node next;        
    // 结点所对应的线程
    volatile Thread thread;        
    // 下一个等待者
    Node nextWaiter;
    
    // 结点是否在共享模式下等待
    final boolean isShared() {
    
        return nextWaiter == SHARED;
    }
    
    // 获取前驱结点,若前驱结点为空,抛出异常
    final Node predecessor() throws NullPointerException {
    
        // 保存前驱结点
        Node p = prev; 
        if (p == null) // 前驱结点为空,抛出异常
            throw new NullPointerException();
        else // 前驱结点不为空,返回
            return p;
    }
    
    // 无参构造方法
    Node() {
        // Used to establish initial head or SHARED marker
    }
    
    // 构造方法
        Node(Thread thread, Node mode) {
        // Used by addWaiter
        this.nextWaiter = mode;
        this.thread = thread;
    }
    
    // 构造方法
    Node(Thread thread, int waitStatus) {
     // Used by Condition
        this.waitStatus = waitStatus;
        this.thread = thread;
    }
}

内部类 - conditionObject类

此类实现了Condition接口,Condition接口定义了条件操作规范,具体如下

public interface Condition {
    

    // 等待,当前线程在接到信号或被中断之前一直处于等待状态
    void await() throws InterruptedException;
    
    // 等待,当前线程在接到信号之前一直处于等待状态,不响应中断
    void awaitUninterruptibly();
    
    //等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态 
    long awaitNanos(long nanosTimeout) throws InterruptedException;
    
    // 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。此方法在行为上等效于: awaitNanos(unit.toNanos(time)) > 0
    boolean await(long time, TimeUnit unit) throws InterruptedException;
    
    // 等待,当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态
    boolean awaitUntil(Date deadline) throws InterruptedException;
    
    // 唤醒一个等待线程。如果所有的线程都在等待此条件,则选择其中的一个唤醒。在从 await 返回之前,该线程必须重新获取锁。
    void signal();
    
    // 唤醒所有等待线程。如果所有的线程都在等待此条件,则唤醒所有线程。在从 await 返回之前,每个线程都必须重新获取锁。
    void signalAll();
}

类的属性

属性中包含了头节点head,尾结点tail,状态state、自旋时间spinForTimeoutThreshold,还有AbstractQueuedSynchronizer抽象的属性在内存中的偏移地址,通过该偏移地址,可以获取和设置该属性的值,同时还包括一个静态初始化块,用于加载内存偏移地址。

public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer
    implements java.io.Serializable {
        
  
    private static final long serialVersionUID = 7373984972572414691L;    
    // 头/尾 节点
    private transient volatile Node head;    
    private transient volatile Node tail;    
    // 状态
    private volatile int state;    
    // 自旋时间
    static final long spinForTimeoutThreshold = 1000L;
    
    // Unsafe类实例
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    /** * 内存地址 */
    // state内存偏移地址
    private static final long stateOffset;
    // head内存偏移地址
    private static final long headOffset;
    // state内存偏移地址
    private static final long tailOffset;
    // tail内存偏移地址
    private static final long waitStatusOffset;
    // next内存偏移地址
    private static final long nextOffset;
}

类的核心方法 - acquire方法

该方法以独占模式获取(资源),忽略中断,即线程在aquire过程中,中断此线程是无效的。

public final void acquire(int arg) {
    
    if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

首先调用tryAcquire方法,调用此方法的线程会试图在独占模式下获取对象状态。此方法应该查询是否允许它在独占模式下获取对象状态,如果允许,则获取它。
若tryAcquire失败,则调用addWaiter方法,将调用此方法的线程封装成为一个结点并放入Sync queue。
调用acquireQueued方法,此方法完成的功能是Sync queue中的结点不断尝试获取资源,若成功,则返回true,否则,返回false。

首先分析addWaiter方法

private Node addWaiter(Node mode) {
    
    // 新生成一个结点,默认为独占模式
    Node node = new Node(Thread.currentThread(), mode);
    // Try the fast path of enq; backup to full enq on failure
    // 保存尾结点
    Node pred = tail;
    if (pred != null) {
     // 尾结点不为空,即已经被初始化
        // 将node结点的prev域连接到尾结点
        node.prev = pred; 
        if (compareAndSetTail(pred, node)) {
     // 比较pred是否为尾结点,是则将尾结点设置为node 
            // 设置尾结点的next域为node
            pred.next = node;
            return node; // 返回新生成的结点
        }
    }
    enq(node); // 尾结点为空(即还没有被初始化过),或者是compareAndSetTail操作失败,则入队列
    return node;
}

//enq方法会使用无限循环来确保节点的成功插入。
private Node enq(final Node node) {
    
    for (;;) {
     // 无限循环,确保结点能够成功入队列
        // 保存尾结点
        Node t = tail;
        if (t == null) {
     // 尾结点为空,即还没被初始化
            if (compareAndSetHead(new Node())) // 头节点为空,并设置头节点为新生成的结点
                tail = head; // 头节点与尾结点都指向同一个新生结点
        } else {
     // 尾结点不为空,即已经被初始化过
            // 将node结点的prev域连接到尾结点
            node.prev = t; 
            if (compareAndSetTail(t, node)) {
     // 比较结点t是否为尾结点,若是则将尾结点设置为node
                // 设置尾结点的next域为node
                t.next = node; 
                return t; // 返回尾结点
            }
        }
    }
}

现在,分析acquireQueue方法。其源码如下

// sync队列中的结点在独占且忽略中断的模式下获取(资源)
final boolean acquireQueued(final Node node, int arg) {
    
    // 标志
    boolean failed = true;
    try {
    
        // 中断标志
        boolean interrupted = false;
        for (;;) {
     // 无限循环
            // 获取node节点的前驱结点
            final Node p = node.predecessor(); 
            if (p == head && tryAcquire(arg)) {
     // 前驱为头节点并且成功获得锁
                setHead(node); // 设置头节点
                p.next = null; // help GC
                failed = false; // 设置标志
                return interrupted; 
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
    
        if (failed)
            cancelAcquire(node);
    }
}

首先获取当前节点的前驱节点,如果前驱节点是头节点并且能够获取(资源),代表该当前节点能够占有锁,设置头节点为当前节点,返回。否则,调用shouldParkAfterFailedAcquire和parkAndCheckInterrupt方法,首先,我们看shouldParkAfterFailedAcquire方法,代码如下

// 当获取(资源)失败后,检查并且更新结点状态
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    
    // 获取前驱结点的状态
    int ws = pred.waitStatus;
    if (ws == Node.SIGNAL) // 状态为SIGNAL,为-1
        /* * This node has already set status asking a release * to signal it, so it can safely park. */
        // 可以进行park操作
        return true; 
    if (ws > 0) {
     // 表示状态为CANCELLED,为1
        /* * Predecessor was cancelled. Skip over predecessors and * indicate retry. */
        do {
    
            node.prev = pred = pred.prev;
        } while (pred.waitStatus > 0); // 找到pred结点前面最近的一个状态不为CANCELLED的结点
        // 赋值pred结点的next域
        pred.next = node; 
    } else {
     // 为PROPAGATE -3 或者是0 表示无状态,(为CONDITION -2时,表示此节点在condition queue中) 
        /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don't park yet. Caller will need to * retry to make sure it cannot acquire before parking. */
        // 比较并设置前驱结点的状态为SIGNAL
        compareAndSetWaitStatus(pred, ws, Node.SIGNAL); 
    }
    // 不能进行park操作
    return false;
}

只有当该节点的前驱结点的状态为SIGNAL时,才可以对该结点所封装的线程进行park操作。否则,将不能进行park操作。再看parkAndCheckInterrupt方法,源码如下

// 进行park操作并且返回该线程是否被中断
private final boolean parkAndCheckInterrupt() {
    
    // 在许可可用之前禁用当前线程,并且设置了blocker
    LockSupport.park(this);
    return Thread.interrupted(); // 当前线程是否已被中断,并清除中断标记位
}

parkAndCheckInterrupt方法里的逻辑是首先执行park操作,即禁用当前线程,然后返回该线程是否已经被中断。再看final块中的cancelAcquire方法,其源码如下:

// 取消继续获取(资源)
private void cancelAcquire(Node node) {
    
    // Ignore if node doesn't exist
    // node为空,返回
    if (node == null)
        return;
    // 设置node结点的thread为空
    node.thread = null;

    // Skip cancelled predecessors
    // 保存node的前驱结点
    Node pred = node.prev;
    while (pred.waitStatus > 0) // 找到node前驱结点中第一个状态小于0的结点,即不为CANCELLED状态的结点
        node.prev = pred = pred.prev;

    // predNext is the apparent node to unsplice. CASes below will
    // fail if not, in which case, we lost race vs another cancel
    // or signal, so no further action is necessary.
    // 获取pred结点的下一个结点
    Node predNext = pred.next;

    // Can use unconditional write instead of CAS here.
    // After this atomic step, other Nodes can skip past us.
    // Before, we are free of interference from other threads.
    // 设置node结点的状态为CANCELLED
    node.waitStatus = Node.CANCELLED;

    // If we are the tail, remove ourselves.
    if (node == tail && compareAndSetTail(node, pred)) {
     // node结点为尾结点,则设置尾结点为pred结点
        // 比较并设置pred结点的next节点为null
        compareAndSetNext(pred, predNext, null); 
    } else {
     // node结点不为尾结点,或者比较设置不成功
        // If successor needs signal, try to set pred's next-link
        // so it will get one. Otherwise wake it up to propagate.
        int ws;
        if (pred != head &&
            ((ws = pred.waitStatus) == Node.SIGNAL ||
                (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
            pred.thread != null) {
     // (pred结点不为头节点,并且pred结点的状态为SIGNAL)或者 
                                // pred结点状态小于等于0,并且比较并设置等待状态为SIGNAL成功,并且pred结点所封装的线程不为空
            // 保存结点的后继
            Node next = node.next;
            if (next != null && next.waitStatus <= 0) // 后继不为空并且后继的状态小于等于0
                compareAndSetNext(pred, predNext, next); // 比较并设置pred.next = next;
        } else {
    
            unparkSuccessor(node); // 释放node的前一个结点
        }

        node.next = node; // help GC
    }
}

该方法完成的功能就是取消当前线程对资源的获取,即设置该结点的状态为CANCELLED,接着我们再看unparkSuccessor方法,源码如下

// 释放后继结点
private void unparkSuccessor(Node node) {
    
    /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */
    // 获取node结点的等待状态
    int ws = node.waitStatus;
    if (ws < 0) // 状态值小于0,为SIGNAL -1 或 CONDITION -2 或 PROPAGATE -3
        // 比较并且设置结点等待状态,设置为0
        compareAndSetWaitStatus(node, ws, 0);

    /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */
    // 获取node节点的下一个结点
    Node s = node.next;
    if (s == null || s.waitStatus > 0) {
     // 下一个结点为空或者下一个节点的等待状态大于0,即为CANCELLED
        // s赋值为空
        s = null; 
        // 从尾结点开始从后往前开始遍历
        for (Node t = tail; t != null && t != node; t = t.prev)
            if (t.waitStatus <= 0) // 找到等待状态小于等于0的结点,找到最前的状态小于等于0的结点
                // 保存结点
                s = t;
    }
    if (s != null) // 该结点不为为空,释放许可
        LockSupport.unpark(s.thread);
}

该方法的作用就是为了释放node节点的后继结点。

对于cancelAcquire与unparkSuccessor方法,如下示意图可以清晰的表示

类的核心方法 - release方法

以独占模式释放对象,其源码如下:

public final boolean release(int arg) {
    
    if (tryRelease(arg)) {
     // 释放成功
        // 保存头节点
        Node h = head; 
        if (h != null && h.waitStatus != 0) // 头节点不为空并且头节点状态不为0
            unparkSuccessor(h); //释放头节点的后继结点
        return true;
    }
    return false;
}

 
 

AbstractQueuedSynchronizer总结

对于AbstractQueuedSynchronizer的分析,最核心的就是sync queue的分析。

  • 每一个结点都是由前一个结点唤醒
  • 当结点发现前驱结点是head并且尝试获取成功,则会轮到该线程运行。
  • condition queue中的结点向sync queue中转移是通过signal操作完成的。
  • 当结点的状态为SIGNAL时,表示后面的结点需要运行

 
 
参考:https://pdai.tech/md/java/thread/java-thread-x-lock-AbstractQueuedSynchronizer.html

原网站

版权声明
本文为[学到的心态]所创,转载请带上原文链接,感谢
https://blog.csdn.net/hiliang521/article/details/126110338