当前位置:网站首页>Keras 分割网络自定义评估函数 - mean iou
Keras 分割网络自定义评估函数 - mean iou
2022-08-05 11:34:00 【为为为什么】
Keras训练网络过程中需要实时观察性能,mean iou不是keras自带的评估函数,tf的又觉得不好用,自己写了一个,经过测试没有问题,本文记录自定义keras mean iou评估的实现方法。
计算 IoU
用numpy计算的,作为IoU的ground truth用作测试使用:
def iou_numpy(y_true,y_pred):
intersection = np.sum(np.multiply(y_true.astype('bool'),y_pred == 1))
union = np.sum((y_true.astype('bool')+y_pred.astype('bool'))>0)
return intersection/union
keras metric IoU
def iou_keras(y_true, y_pred):
"""
Return the Intersection over Union (IoU).
Args:
y_true: the expected y values as a one-hot
y_pred: the predicted y values as a one-hot or softmax output
Returns:
the IoU for the given label
"""
label = 1
# extract the label values using the argmax operator then
# calculate equality of the predictions and truths to the label
y_true = K.cast(K.equal(y_true, label), K.floatx())
y_pred = K.cast(K.equal(y_pred, label), K.floatx())
# calculate the |intersection| (AND) of the labels
intersection = K.sum(y_true * y_pred)
# calculate the |union| (OR) of the labels
union = K.sum(y_true) + K.sum(y_pred) - intersection
# avoid divide by zero - if the union is zero, return 1
# otherwise, return the intersection over union
return K.switch(K.equal(union, 0), 1.0, intersection / union)
计算 mean IoU
mean IoU 简便起见,选取 (0,1,0.05) 作为不同的IoU阈值,计算平均IoU numpy 真实值计算
def mean_iou_numpy(y_true,y_pred):
iou_list = []
for thre in list(np.arange(0.0000001,0.99,0.05)):
y_pred_temp = y_pred >= thre
iou = iou_numpy(y_true, y_pred_temp)
iou_list.append(iou)
return np.mean(iou_list)
Keras mean IoU
def mean_iou_keras(y_true, y_pred):
"""
Return the mean Intersection over Union (IoU).
Args:
y_true: the expected y values as a one-hot
y_pred: the predicted y values as a one-hot or softmax output
Returns:
the mean IoU
"""
label = 1
# extract the label values using the argmax operator then
# calculate equality of the predictions and truths to the label
y_true = K.cast(K.equal(y_true, label), K.floatx())
mean_iou = K.variable(0)
thre_list = list(np.arange(0.0000001,0.99,0.05))
for thre in thre_list:
y_pred_temp = K.cast(y_pred >= thre, K.floatx())
y_pred_temp = K.cast(K.equal(y_pred_temp, label), K.floatx())
# calculate the |intersection| (AND) of the labels
intersection = K.sum(y_true * y_pred_temp)
# calculate the |union| (OR) of the labels
union = K.sum(y_true) + K.sum(y_pred_temp) - intersection
iou = K.switch(K.equal(union, 0), 1.0, intersection / union)
mean_iou = mean_iou + iou
return mean_iou / len(thre_list)
测试
## 随机生成预测值
y_true_np = np.ones([10,10])
y_pred_np = np.random.rand(10,10)
## 真实IoU值
print(f' iou : {iou_numpy(y_true_np, y_pred_np)}')
print(f' mean_iou_numpy : {mean_iou_numpy(y_true_np, y_pred_np)}')
y_true = tf.Variable(y_true_np)
y_pred = tf.Variable(y_pred_np)
## 计算节点
iou_res = iou_keras (y_true, y_pred)
m_iou_res = mean_iou_keras (y_true, y_pred)
## 变量初始化
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
## 由于存在误差,结果在0.0000001范围内即可认为相同
result = sess.run(iou_res)
print(f'result : {result} \nsame with ground truth: {abs(iou_numpy(y_true_np, y_pred_np) - result)< 0.0000001}')
result = sess.run(m_iou_res)
print(f'result : {result} \nsame with ground truth: {abs(mean_iou_numpy(y_true_np, y_pred_np) - result) < 0.0000001}')
输出:
iou : 0.0
mean_iou_numpy : 0.5295
result : 0.0
same with ground truth: True
result : 0.5295000076293945
same with ground truth: True
源码下载
边栏推荐
- Http-Sumggling Cache Vulnerability Analysis
- 五大理由告诉你为什么开发人员选择代码质量静态分析工具Klocwork来实现软件安全
- 学习用于视觉跟踪的深度紧凑图像表示
- 163_技巧_Power BI 一键批量建立自定义字段参数
- hdu4545 魔法串
- 苹果Meta都在冲的Pancake技术,中国VR团队YVR竟抢先交出产品答卷
- Three methods for extracting facial features
- Integration testing of software testing
- Machine Learning - Logistic Regression
- Android 开发用 Kotlin 编程语言 二 条件控制
猜你喜欢
随机推荐
多业务模式下的交易链路探索与实践
2022 CCF国际AIOps挑战赛决赛暨AIOps研讨会报名已开启
Custom filters and interceptors implement ThreadLocal thread closure
问题征集丨ECCV 2022中国预讲会 · Panel专题研讨会
knife4j
LeetCode刷题(8)
163_Tricks_Power BI one-click batch creation of custom field parameters
STM32入门开发:编写XPT2046电阻触摸屏驱动(模拟SPI)
常见的 web 安全问题总结
【硬件架构的艺术】学习笔记(2)同步和复位
支持向量机SVM
再获殊荣 | 赛宁网安入选2022年度“培育独角兽”企业榜单
lvgl 实现状态提示图标自动对齐补位显示
hdu1455 Sticks(搜索+剪枝+剪枝+.....+剪枝)
.NET深入解析LINQ框架(六:LINQ执行表达式)
Android 开发用 Kotlin 编程语言 二 条件控制
Introduction to the Evolution of Data Governance System
Android 开发用 Kotlin 编程语言三 循环控制
有多一只“手”的机器狗出没?就在昇腾AI开发者创享日·南京站
朴素贝叶斯