当前位置:网站首页>Semantic segmentation | learning record (1) semantic segmentation Preface
Semantic segmentation | learning record (1) semantic segmentation Preface
2022-07-08 02:09:00 【coder_ sure】
Semantic segmentation | Learning record (1) Semantic segmentation Preface
Tips : come from up Lord thunderbolt Wz, I'm just taking study notes , Original video
List of articles
- Semantic segmentation | Learning record (1) Semantic segmentation Preface
- Preface
- One 、 What is semantic segmentation ?
- Two 、 Learning Planning
- Two 、 Common dataset formats for semantic segmentation tasks
- 3、 ... and 、 The specific form of the result obtained by semantic segmentation
- Four 、 Semantic segmentation evaluation index
- 5、 ... and 、 Semantic segmentation annotation tool
- 6、 ... and 、 Reference material
Preface
The preface of semantic segmentation mainly introduces the content involved in this paper :
- What is semantic segmentation
- Tentative learning objectives
- Common dataset formats for semantic segmentation tasks
- The specific form of the result obtained by semantic segmentation
- Common evaluation indicators for semantic segmentation
- Semantic segmentation annotation tool
One 、 What is semantic segmentation ?
Semantic segmentation is one of the common segmentation tasks , Common segmentation tasks have the following three aspects :
- Semantic segmentation (semantic segmentation)FCN
- Instance segmentation (Instance segmentation)Mask R-CNN
- Panoramic segmentation (Panoramic segmentation) Panoptic FPN


Panoramic segmentation is not only to distinguish the background and foreground , Moreover, the background should be classified and segmented in some columns .
The difficulty of the above three segmentation tasks increases in turn .
Two 、 Learning Planning
Several semantic segmentation algorithm source code introduction 
Two 、 Common dataset formats for semantic segmentation tasks
1.PASCAL VOC

PASCAL VOC What is provided in semantic segmentation is actually a PNG picture , In this PNG The file records the category of each pixel , there PNG Pictures are stored in palette format ( The original picture is a 1 Grayscale image of the channel ), The corresponding pixel value is mapped to the corresponding color value . such as :
- Pixels 0 The corresponding is (0,0,0) black
- Pixels 1 The corresponding is (127,0,0) Deep red
- Pixels 255 The corresponding is (224,224,129)
This 255 It's necessary to explain : When we calculate the loss, we will ignore that the pixel value is 255 These pixels , Because it's hard to say which category the edge of the target strictly belongs to , Including some goals that are not easy to divide , We also have 255 Fill in . such as , The figure above has a quadrilateral , It's actually the tail of an airplane , This segmentation is very difficult , We just ignore it .
2.MS COCO

The feature is that each target is given a polygon , And record the coordinates of each corner of the polygon .
MS COCO Data set introduction and pycocotools Easy to use
3、 ... and 、 The specific form of the result obtained by semantic segmentation

Why not directly display grayscale images , But to turn it into color ?
for instance The plane is a pixel value corresponding to 1, Person correspondence is 15, The difference between them is very big , If in the form of gray , It's hard for us to see the difference .
So we map the pixel value to the color format , also Each pixel value corresponds to the category index .
Four 、 Semantic segmentation evaluation index
Pixel Accuracy(Global Acc): pre measuring just indeed Of image plain individual Count total Of image plain individual Count \frac { Predict the correct number of pixels }{ Total number of pixels } total Of image plain individual Count pre measuring just indeed Of image plain individual Count
Σ i n i i Σ i t i \frac{\Sigma_{i}n_{ii}}{\Sigma_{i}t_{i}} ΣitiΣinii
mean Accuracy: Average the accuracy of each category of pixels
1 n c l s Σ i n i i t i \frac{1}{n_{cls}}\Sigma_{i}\frac{n_{ii}}{t_{i}} ncls1Σitinii
mean IoU: Yes IoU averaging
1 n c l s Σ i n i i t i + Σ j n j i − n i i \frac{1}{n_{cls}}\Sigma_{i}\frac{n_{ii}}{t_{i}+\Sigma_{j}n_{ji}-n_{ii}} ncls1Σiti+Σjnji−niinii
Yan color heavy Stack District Domain Of Noodles product total Noodles product \frac { Area of color overlapping area }{ Total area } total Noodles product Yan color heavy Stack District Domain Of Noodles product 
among :
- n i j n_{ij} nij: Category i Predicted into categories j The number of pixels
- n c l s n_{cls} ncls: Number of target categories ( Include background )
- t i = Σ j n i j : t_{i}=\Sigma_{j}n_{ij}: ti=Σjnij: Target categories i Total number of pixels ( Real label )
Have a deep understanding of this evaluation index








mean acc = 1 5 ∑ ( c l a s s i a c c ) \ =\frac{1}{5}\sum(class_iacc) =51∑(classiacc)

mean IoU = 1 5 ∑ ( c l s i i o u ) \ =\frac{1}{5}\sum(cls_i iou) =51∑(clsiiou)
5、 ... and 、 Semantic segmentation annotation tool
Traditional annotation tools , such as :Labelme
Labelme
A semiautomatic annotation tool : Baidu EISeg
EISeg
6、 ... and 、 Reference material
PASCAL VOC2012 Data set introduction
EISeg Segmentation and annotation software use
边栏推荐
- COMSOL --- construction of micro resistance beam model --- final temperature distribution and deformation --- addition of materials
- Redismission source code analysis
- The generosity of a pot fish
- XXL job of distributed timed tasks
- 系统测试的类型有哪些,我给你介绍
- ArrayList源码深度剖析,从最基本的扩容原理,到魔幻的迭代器和fast-fail机制,你想要的这都有!!!
- The method of using thread in PowerBuilder
- Neural network and deep learning-5-perceptron-pytorch
- 力扣5_876. 链表的中间结点
- Introduction à l'outil nmap et aux commandes communes
猜你喜欢

MySQL查询为什么没走索引?这篇文章带你全面解析

leetcode 865. Smallest Subtree with all the Deepest Nodes | 865. The smallest subtree with all the deepest nodes (BFs of the tree, parent reverse index map)

《通信软件开发与应用》课程结业报告

Clickhouse principle analysis and application practice "reading notes (8)

leetcode 865. Smallest Subtree with all the Deepest Nodes | 865.具有所有最深节点的最小子树(树的BFS,parent反向索引map)

微信小程序uniapp页面无法跳转:“navigateTo:fail can not navigateTo a tabbar page“

ClickHouse原理解析与应用实践》读书笔记(8)

XMeter Newsletter 2022-06|企业版 v3.2.3 发布,错误日志与测试报告图表优化

metasploit

Introduction to ADB tools
随机推荐
需要思考的地方
leetcode 873. Length of Longest Fibonacci Subsequence | 873. 最长的斐波那契子序列的长度
[error] error loading H5 weight attributeerror: 'STR' object has no attribute 'decode‘
力扣4_412. Fizz Buzz
Ml self realization / linear regression / multivariable
静态路由配置全面详解,静态路由快速入门指南
Beaucoup d'enfants ne savent pas grand - chose sur le principe sous - jacent du cadre orm, non, ice River vous emmène 10 minutes à la main "un cadre orm minimaliste" (collectionnez - le maintenant)
WPF custom realistic wind radar chart control
QML fonts use pixelsize to adapt to the interface
How to use diffusion models for interpolation—— Principle analysis and code practice
快手小程序担保支付php源码封装
JVM memory and garbage collection-3-runtime data area / heap area
电路如图,R1=2kΩ,R2=2kΩ,R3=4kΩ,Rf=4kΩ。求输出与输入关系表达式。
Flutter 3.0框架下的小程序运行
喜欢测特曼的阿洛
谈谈 SAP 系统的权限管控和事务记录功能的实现
ClickHouse原理解析与应用实践》读书笔记(8)
发现值守设备被攻击后分析思路
Get familiar with XML parsing quickly
OpenGL/WebGL着色器开发入门指南