当前位置:网站首页>ITK learning notes (VII) the position of ITK rotation direction remains unchanged
ITK learning notes (VII) the position of ITK rotation direction remains unchanged
2022-07-03 23:50:00 【juluwangriyue】
# -*- coding : UTF-8 -*-
# @file : resample_change_direction.py
# @Time : 2022-02-14 16:19
# @Author : wmz
import os
import numpy as np
import SimpleITK as sitk
def getFiles(path, suffix):
return [os.path.join(root, file) for root, dirs, files in os.walk(path) for file in files if file.endswith(suffix)]
def resampleVolume(outspacing, vol):
""" Resample volume data to the specified spacing size \n paras: outpacing: designated spacing, for example [1,1,1] vol:sitk Read the image Information , Here is volume data \n return: Resampled data """
outsize = [0, 0, 0]
# Read the file size and spacing Information
inputsize = vol.GetSize()
inputspacing = vol.GetSpacing()
transform = sitk.Transform()
transform.SetIdentity()
# Calculation changes spacing After size, Use physical dimensions / Voxel size
outsize[0] = round(inputsize[0] * inputspacing[0] / outspacing[0])
outsize[1] = round(inputsize[1] * inputspacing[1] / outspacing[1])
outsize[2] = round(inputsize[2] * inputspacing[2] / outspacing[2])
# Set some parameters of resampling
resampler = sitk.ResampleImageFilter()
resampler.SetTransform(transform)
resampler.SetInterpolator(sitk.sitkLinear)
resampler.SetOutputOrigin(vol.GetOrigin())
resampler.SetOutputSpacing(outspacing)
resampler.SetOutputDirection(vol.GetDirection())
resampler.SetSize(outsize)
newvol = resampler.Execute(vol)
return newvol
def resample_direction(itk_img, direction=tuple([1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0])):
""" Resample volume data to the specified spacing size \n paras: outpacing: designated spacing, for example [1,1,1] vol:sitk Read the image Information , Here is volume data \n return: Resampled data """
outsize = [0, 0, 0]
# Read the file size and spacing Information
img_size = itk_img.GetSize()
spacing = itk_img.GetSpacing()
transform = sitk.Transform()
transform.SetIdentity()
# Calculation changes spacing After size, Use physical dimensions / Voxel size
outsize[0] = round(img_size[0])
outsize[1] = round(img_size[1])
outsize[2] = round(img_size[2])
origin = itk_img.GetOrigin()
new_origin = tuple([origin[0] - spacing[0] * img_size[0], origin[1] - spacing[1] * img_size[1], origin[2]])
# Set some parameters of resampling
resampler = sitk.ResampleImageFilter()
# resampler.SetReferenceImage(itk_img)
resampler.SetTransform(transform)
resampler.SetInterpolator(sitk.sitkLinear)
resampler.SetSize(outsize)
resampler.SetOutputOrigin(new_origin)
resampler.SetOutputDirection(direction)
resampler.SetOutputSpacing(spacing)
new_img = resampler.Execute(itk_img)
out_arr = sitk.GetArrayFromImage(new_img)
return new_img
def resample_image(itk_image, out_spacing,out_direction, is_label=False):
original_size = itk_image.GetSize()
original_spacing = itk_image.GetSpacing()
out_size = [
int(np.round(original_size[0] * (original_spacing[0] / out_spacing[0]))),
int(np.round(original_size[1] * (original_spacing[1] / out_spacing[1]))),
int(np.round(original_size[2] * (original_spacing[2] / out_spacing[2])))
]
resample = sitk.ResampleImageFilter()
resample.SetOutputSpacing(out_spacing)
resample.SetSize(out_size)
resample.SetOutputDirection(out_direction)
resample.SetOutputOrigin(itk_image.GetOrigin())
if is_label:
resample.SetDefaultPixelValue(0) # Fill in the value where there is no image
resample.SetInterpolator(sitk.sitkNearestNeighbor)
else:
resample.SetDefaultPixelValue(-10) # -10 I adjusted the window width out of the window
resample.SetInterpolator(sitk.sitkBSpline)
return resample.Execute(itk_image)
if __name__ == '__main__':
img_fath = r"D:\Dataset\landmark\Data_train_scaled_2"
filelist = getFiles(img_fath, "nii.gz")
dst_path = r"D:\Dataset\landmark\resample_direction_train"
for imgfile in filelist:
org_img = sitk.Image(sitk.ReadImage(imgfile))
direct = org_img.GetDirection()
direction = tuple([1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0])
spacing = org_img.GetSpacing()
img_size = org_img.GetSize()
img_arr = sitk.GetArrayFromImage(org_img)
out_img = resample_direction(org_img, direction)
# out_img = resample_image(org_img, spacing, direction)
# out_img = sitk.GetImageFromArray(sitk.GetArrayFromImage(org_img))
# out_arr = sitk.GetArrayFromImage(out_img)
# out_arr = np.flip(out_arr, [1, 2])
# out_img = sitk.GetImageFromArray(out_arr)
# # setup other image characteristics
# origin = org_img.GetOrigin()
# new_origin = tuple([origin[0] - spacing[0] * img_size[0], origin[1] - spacing[1] * img_size[1], origin[2]])
# # out_img.SetOrigin(org_img.GetOrigin())
# out_img.SetOrigin(new_origin)
# out_img.SetSpacing(org_img.GetSpacing())
# set to RAI
out_img.SetDirection(tuple([1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]))
out_arr = sitk.GetArrayFromImage(out_img)
dst_file = os.path.join(dst_path, imgfile.rsplit("\\")[-1])
sitk.WriteImage(out_img, dst_file)
print("saved file: ", dst_file)
边栏推荐
- [MySQL] sql99 syntax to realize multi table query
- Actual combat | use composite material 3 in application
- Make small tip
- 2.14 summary
- Solve the problem that the kaggle account registration does not display the verification code
- 2/14 (regular expression, sed streaming editor)
- Recursive least square adjustment
- Idea set class header comments
- 2022 free examination questions for hoisting machinery command and hoisting machinery command theory examination
- D29:post Office (post office, translation)
猜你喜欢

Idea integrates Microsoft TFs plug-in

Collation of the most complete Chinese naturallanguageprocessing data sets, platforms and tools

Iclr2022: how does AI recognize "things I haven't seen"?

It is the most difficult to teach AI to play iron fist frame by frame. Now arcade game lovers have something

Tencent interview: can you pour water?

The first game of the new year, many bug awards submitted

A method to solve Bert long text matching

Double efficiency. Six easy-to-use pychar plug-ins are recommended

Private project practice sharing populate joint query in mongoose makes the template unable to render - solve the error message: syntaxerror: unexpected token r in JSON at

EPF: a fuzzy testing framework for network protocols based on evolution, protocol awareness and coverage guidance
随机推荐
FPGA tutorial and Allegro tutorial - link
Unity shader visualizer shader graph
Powerful blog summary
Yyds dry goods inventory three JS source code interpretation - getobjectbyproperty method
Pyqt5 sensitive word detection tool production, operator's Gospel
D23:multiple of 3 or 5 (multiple of 3 or 5, translation + solution)
Alibaba cloud container service differentiation SLO hybrid technology practice
2022 chemical automation control instrument examination content and chemical automation control instrument simulation examination
Introducing Software Testing
[note] glide process and source code analysis
Gossip about redis source code 74
2022.02.14
NPM script
Ningde times and BYD have refuted rumors one after another. Why does someone always want to harm domestic brands?
Open 2022 efficient office, starting from project management
Private project practice sharing populate joint query in mongoose makes the template unable to render - solve the error message: syntaxerror: unexpected token r in JSON at
C # basic knowledge (1)
网上的低佣金链接安全吗?招商证券怎么开户?
Pytorch learning notes 5: model creation
No qualifying bean of type ‘com. netflix. discovery. AbstractDiscoveryClientOptionalArgs<?>‘ available