当前位置:网站首页>Halcon 3D 深度图转换为3D图像
Halcon 3D 深度图转换为3D图像
2022-06-12 05:30:00 【Σίσυφος1900】
一、简介
深度图转点云原理 - horsetail - 博客园
深度图像和 3D 点云互转只涉及相机内参矩阵,其中
- fx,fy 分别为镜头 x,y 方向的焦距(成像平面到镜头的距离)
- cx,cy 分别是光心(镜头中心点在成像平面的投影)在图像坐标系(原点位于图像左上角,水平为 x,垂直为 y)下的坐标。

二、算子介绍
1、阈值分割
auto_threshold (AerialImage, Regions, 5)
* auto_threshold(Image : Regions : Sigma : )
*根据直方图确定阈值自动全局阈值分割,运行原理,第一,计算灰度直方图。第二,高斯平滑后从直方图提取最小值。第三,根据提取的最小值进行阈值分割。sigma越大提取区域越少。2、图像转换
*将分割后区域转换为标签图像。
region_to_label (Regions, LabelImage, 'byte', Width, Height)
* region_to_label根据它们的索引(1..n)将输入区域转换成标签图像,即,第一区域被绘成灰度值1,第二区域被绘成灰度值2等。仅使用正灰度值。
第三个参数 : * 对于'byte'图像,索引以取256的模输入。默认是int2
*Width (input_control)要生成的图像的宽度
*Height (input_control) 要生成的图像的高度3、 使用多项式将创建倾斜的灰色曲面
gen_image_surface_first_order (X, 'real', 0, xishu, 0, 0, 0, Width, Height)
gen_image_surface_first_order (Y, 'real', -xishu, 0, 0, 0, 0, Width, Height)
* 使用一阶多项式创建倾斜的灰色曲面。 (输出图像,类型,垂直方向的参数,水平方向的参数,0阶参数,参考点的行坐标,列坐标,图像的宽高)。
* ImageSurface(r,c) = Alpha(r - Row) +Beta(c - Column) +Gamma
*gen_image_surface_first_order( : ImageSurface : Type, Alpha, Beta, Gamma, Row, Column, Width, Height : )
*ImageSurface (output_object) 新创建的图像矩阵。
*Type (input_control)像素类型 'byte'
*Alpha (input_control) 垂直方向的一阶系数
*Beta (input_control)水平方向上的一阶系数
*Gamma (input_control) 零阶系数
*Row (input_control)曲面参考点的行坐标
*Column (input_control)曲面参考点的列坐标
*Width (input_control) 图像宽度
*Height (input_control) 图像高度边栏推荐
- Performance test - Analysis of performance test results
- Object class not ended
- Yolo opencv scale identification scale reading identification water gauge identification water level identification source code
- Fundamentals of intensive learning openai gym environment construction demo
- Save the object in redis, save the bean in redis hash, and attach the bean map interoperation tool class
- Set common methods
- Is the individual industrial and commercial door a legal person enterprise
- Pupanvr- some tool class objects (6)
- How Wireshark decrypts WiFi data packets
- Serial port oscilloscope_ port_ Setup of plotter secondary development environment (including QT setup)
猜你喜欢

Development of video preview for main interface of pupanvr-ui

什么是工程预付款

The most commonly used objective weighting method -- entropy weight method

Yolov5 realizes road crack detection

论文阅读_图神经网络GIN

Go 面向接口编程实战

Detailed explanation of data envelopment analysis (DEA) (taking the 8th Ningxia provincial competition as an example)

What is the project advance payment

Detailed analysis of the 2021 central China Cup Title A (color selection of mosaic tiles)

Performance test - performance test tool analysis
随机推荐
公司注册认缴资金多久
4.3 模拟浏览器操作和页面等待(显示等待和隐式等待、句柄)
tkinter使用WebView2网页组件(续篇)
Go 面向接口编程实战
Minigui3 runs on Hisilicon hi3520d/hi3531 platform
Force/release learning arrangement in IC Verification (5) research on the influence of reg type signals
Pupanvr- establishment of development environment and diary, addition of some basic tool functions (3)
16. Somme des trois plus proches
Performance & interface test tool - JMeter
Font conversion optimization
Performance test - Analysis of performance test results
Uview customer management JS
Nature | make an account of the new crown casualties in the world
Yolo opencv scale identification scale reading identification water gauge identification water level identification source code
@Configurationproperties value cannot be injected
【js小知识】轻松了解js防抖与节流
Fundamentals of intensive learning openai gym environment construction demo
Thingsboard view telemetry data through database
12.24 day exercise -- Programming summation, 99 multiplication table, while loop and for loop exercises
Multi thread learning v. volatile visibility and cache inconsistency, instruction reordering