当前位置:网站首页>Win10 CUDA CUDNN installation configuration (torch paddlepaddle)
Win10 CUDA CUDNN installation configuration (torch paddlepaddle)
2022-07-31 04:02:00 【raccoon extraordinary】
Foreword
Finally, the configuration of CUDA CUDNN is done this time. My graphics card is Geforece Nvidia 930MX.
This time record the configuration process.The cuda10.2 version has good support for torch and paddle, so this time we install cuda10.2
One: Check the driver that supports cuda10.2
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
cuda 10.2 driver version greater than or equal to 441.22
Two: Get a driver that supports your own GPU
https://www.nvidia.cn/geforce/drivers/
According to the first step, the driver we need to download is greater than or equal to 441.22
Enter the model number
Search for the driver that meets the requirements
Download and install
download cuda10.2 and cudnn
You can get it on the official website below, or you can get it directly from Baidu Netdisk
Link: https://pan.baidu.com/s/1W5IjQWDrT0kpmI1fMoapmQ?pwd=if33
Extraction code: if33
cuda 10.2 download address
https://developer.nvidia.com/cuda-10.2-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
cudnn version download address
https://developer.nvidia.com/rdp/cudnn-archive
Unzip and install cuda10.2
Update.Core installation may report errors, just delete it
Select custom installation during installation, and then choose the installation path by yourself, of course, it is best to default directly
Unzip and add cudnn
Move the files in the folder corresponding to the unzipped cudnn to the folder corresponding to the cuda we installed
Add environment variables
Third test installation
nvcc -V
torch history
https://pytorch.org/get-started/previous-versions/
torch paddle tensorflow test whether the installation is successful
import tensorflow as tfprint(tf.test.is_gpu_available())print(tf.config.list_physical_devices('GPU'))import torchprint(torch.cuda.is_available())print(torch.Tensor(5, 3).cuda())import paddlepaddle.fluid.install_check.run_check()paddle.fluid.is_compiled_with_cuda()
Concluding remarks
This is almost done.
边栏推荐
- els block to the left to move the conditional judgment
- 《DeepJIT: An End-To-End Deep Learning Framework for Just-In-Time Defect Prediction》论文笔记
- (四)递归、可变参数、访问修饰符、理解 main 方法、代码块
- Port inspection steps - 7680 port analysis - Dosvc service
- RESTful api interface design specification
- Database implements distributed locks
- "DeepJIT: An End-To-End Deep Learning Framework for Just-In-Time Defect Prediction" paper notes
- qlib架构
- Redis uses sorted set to cache latest comments
- MATLAB/Simulink & & STM32CubeMX tool chain completes model-based design development (MBD) (three)
猜你喜欢
exsl文件预览,word文件预览网页方法
[C language] General method of base conversion
(8) Math class, Arrays class, System class, Biglnteger and BigDecimal classes, date class
LeetCode每日一练 —— 138. 复制带随机指针的链表
【小土堆补充】Pytorch学习笔记_Anaconda虚拟环境使用
扫雷游戏(c语言写)
Database implements distributed locks
type_traits元编程库学习
Detailed explanation of TCP and UDP
Just debuted "Fight to Fame", safety and comfort are not lost
随机推荐
type_traits元编程库学习
exsl文件预览,word文件预览网页方法
Unity2D 自定义Scriptable Tiles的理解与使用(四)——开始着手构建一个基于Tile类的自定义tile(下)
进程间通信
mysql基础知识(二)
LocalDate加减操作及比较大小
高等数学---第九章二重积分
【AUTOSAR-RTE】-4-Port and Interface and Data Type
5. How does the SAP ABAP OData service support the $filter operation
安全20220715
端口排查步骤-7680端口分析-Dosvc服务
$parent/$children 与 ref
three.js 制作3D相册
Database implements distributed locks
PMP WeChat group daily exercises
[AUTOSAR-RTE]-5-Explicit (explicit) and Implicit (implicit) Sender-Receiver communication
MATLAB/Simulink&&STM32CubeMX工具链完成基于模型的设计开发(MBD)(三)
No qualifying bean of type question
Based on the local, linking the world | Schneider Electric "Industrial SI Alliance" joins hands with partners to go to the future industry
微软 AI 量化投资平台 Qlib 体验