当前位置:网站首页>选出表中的中位数记录[构造左右边界 || 问题转换]

选出表中的中位数记录[构造左右边界 || 问题转换]

2022-08-03 18:28:00 REN_林森

前言

对于选表中的中位数记录,或者说中位数落在了那一块记录,该如何解?可构造左右边界 || 问题转换(正序累计&反序累计都大于中值时该记录为中位数记录)。

一、中位数问题

在这里插入图片描述

二、构造边界 & 问题转换

分两类思想,一类构造左右边界 & 中值;一类问题转化,反向思考,当正序累计 & 逆序累计都大于中值时,则为中位数。

解1:两层view + lead()构造左右边界

with view4base as(
    select
        grade,
        sum(number) over(order by grade) `right`,
        sum(number) over() total
    from class_grade
),view4lead as(
    select
        grade,total,
        lead(`right` + 1,1)  over(order by `right` desc) `left`,`right`
    from view4base 
)
select grade
from view4lead
where (total >> 1) + 1 >= `left` and (total >> 1) + 1 <= `right`
    or total & 1 = 0 and (total >> 1) >= `left` and (total>>1) <= `right`
order by grade

解2:直接做运算得到想要的值–左边界。

with view4base as(
    select
        grade,
        sum(number) over(order by grade) - number `left`,
        sum(number) over(order by grade) + 1 `right`,
        sum(number) over() total
    from class_grade
)
select grade
from view4base
where (total >> 1) + 1 > `left` and (total >> 1) + 1 < `right`
    or total & 1 = 0 and (total >> 1) > `left` and (total >> 1) < `right`
order by grade

解3:中位数:n + 1 / 2 和 n / 2 + 1

with view4base as(
    select
        grade,
        sum(number) over(order by grade) - number `left`,
        sum(number) over(order by grade) + 1 `right`,
        # 中位数:n + 1 / 2 和 n / 2 + 1
         sum(number) over() +  1 >> 1 mid1,
        (sum(number) over() >> 1) + 1 mid2
    from class_grade
)
select grade
from view4base
where mid1 > `left` and mid1 < `right` or mid2 > `left` and mid2 < `right`
order by grade

解4:当一个数正序 & 逆序累计都大于等于中值时(非取整,保留0.5),这个数为中位数。

with view4base as(
    select
        grade,
        sum(number) over(order by grade) m,
        sum(number) over(order by grade desc) n,
        sum(number) over() / 2  mid
    from class_grade
)
select grade
from view4base
where m >= mid and n >= mid
order by grade

总结

1)中位数问题思路,构造左右边界 & 问题转换。
2)抽象能力很重要,不管是聚集函数/窗口函数/内置函数,入参&结果不过可看成一个值,再上面做四则运算/函数等都是OK的,抽象的看待问题。

参考文献

[1] LeetCode 最差是第几名(二)

原网站

版权声明
本文为[REN_林森]所创,转载请带上原文链接,感谢
https://blog.csdn.net/qq_43164662/article/details/126140633