当前位置:网站首页>反卷积通俗详细解析与nn.ConvTranspose2d重要参数解释

反卷积通俗详细解析与nn.ConvTranspose2d重要参数解释

2022-07-07 07:19:00 iioSnail

反卷积的作用

传统的卷积通常是将大图片卷积成一张小图片,而反卷积就是反过来,将一张小图片变成大图片

但这有什么用呢?其实有用,例如,在生成网络(GAN)中,我们是给网络一个向量,然后生成一张图片

在这里插入图片描述

所以我们需要想办法把这个向量一直扩,最终扩到图片的的大小。


卷积中padding的几个概念

在了解反卷积前,先来学习传统卷积的几个padding概念,因为后面反卷积也有相同的概念

No Padding


No Padding就是padding为0,这样卷积之后图片尺寸就会缩小,这个大家应该都知道

下面的图片都是 蓝色为输入图片,绿色为输出图片。

Half(Same) Padding

在这里插入图片描述
Half Padding也称为Same Padding,先说SameSame指的就是输出的图片和输入图片的大小一致,而在stride为1的情况下,若想让输入输出尺寸一致,需要指定 p = ⌊ k / 2 ⌋ p=\lfloor k/2 \rfloor p=k/2,这就是 Half 的由来,即padding数为kerner_size的一半。

在 pytorch 中支持same padding,例如:

inputs = torch.rand(1, 3, 32, 32)
outputs = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=5, padding='same')(inputs)
outputs.size()
torch.Size([1, 3, 32, 32])

Full Padding

在这里插入图片描述

p = k − 1 p=k-1 p=k1 时就达到了 Full Padding。为什么这么说呢?可以观察上图, k = 3 k=3 k=3 p = 2 p=2 p=2,此时在第一格卷积的时候,只有一个输入单位参与了卷积。假设 p = 3 p=3 p=3 了,那么就会存在一些卷积操作根本没有输入单位参与,最终导致值为0,那跟没做一个样。

我们可以用pytorch做个验证,首先我们来一个Full Padding:

inputs = torch.rand(1, 1, 2, 2)
outputs = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3, padding=2, bias=False)(inputs)
outputs
tensor([[[[-0.0302, -0.0356, -0.0145, -0.0203],
          [-0.0515, -0.2749, -0.0265, -0.1281],
          [ 0.0076, -0.1857, -0.1314, -0.0838],
          [ 0.0187,  0.2207,  0.1328, -0.2150]]]],
       grad_fn=<SlowConv2DBackward0>)

可以看到此时的输出都是正常的,我们将padding再增大,变为3:

inputs = torch.rand(1, 1, 2, 2)
outputs = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3, padding=3, bias=False)(inputs)
outputs
tensor([[[[ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
          [ 0.0000,  0.1262,  0.2506,  0.1761,  0.3091,  0.0000],
          [ 0.0000,  0.3192,  0.6019,  0.5570,  0.3143,  0.0000],
          [ 0.0000,  0.1465,  0.0853, -0.1829, -0.1264,  0.0000],
          [ 0.0000, -0.0703, -0.2774, -0.3261, -0.1201,  0.0000],
          [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000]]]],
       grad_fn=<SlowConv2DBackward0>)

可以看到最终输出图像周围多了一圈 0,这就是部分卷积没有输入图片参与,导致无效了计算。


反卷积

反卷积其实和卷积是一样的,只不是参数对应关系有点变化。例如:

在这里插入图片描述
这是一个padding=0的反卷积,这时候你肯定要问了,这padding分明是2嘛,你怎么说是0呢?请看下面

反卷积中的Padding参数

在传统卷积中,我们的 padding 范围为 [ 0 , k − 1 ] [0, k-1] [0,k1] p = 0 p=0 p=0 被称为 No padding, p = k − 1 p=k-1 p=k1 被称为 Full Padding。

而在反卷积中的 p ′ p' p 刚好相反,也就是 p ′ = k − 1 − p p' = k-1 - p p=k1p 。也就是当我们传 p ′ = 0 p'=0 p=0 时,相当于在传统卷积中传了 p = k − 1 p=k-1 p=k1,而传 p ′ = k − 1 p'=k-1 p=k1 时,相当于在传统卷积中传了 p = 0 p=0 p=0

我们可以用如下实验进行验证:

inputs = torch.rand(1, 1, 32, 32)
# 定义反卷积,这里 p'=2, 为反卷积中的Full Padding
transposed_conv = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=3, padding=2, bias=False)
# 定义卷积,这里p=0,为卷积中的No Padding
conv = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3, padding=0, bias=False)
# 让反卷积与卷积kernel参数保持一致,这里其实是将卷积核参数的转置赋给了反卷积
transposed_conv.load_state_dict(OrderedDict([('weight', torch.Tensor(np.array(conv.state_dict().get('weight'))[:, :, ::-1, ::-1].copy()))]))
# 进行前向传递
transposed_conv_outputs = transposed_conv(inputs)
conv_outputs = conv(inputs)

# 打印卷积输出和反卷积输出的size
print("transposed_conv_outputs.size", transposed_conv_outputs.size())
print("conv_outputs.size", conv_outputs.size())

# 查看它们输出的值是否一致。
#(因为上面将参数转为numpy,又转了回来,所以其实卷积和反卷积的参数是有误差的,
# 所以不能直接使用==,采用了这种方式,其实等价于==)
(transposed_conv_outputs - conv_outputs) < 0.01
transposed_conv_outputs.size:  torch.Size([1, 1, 30, 30])
conv_outputs.size:  torch.Size([1, 1, 30, 30])

tensor([[[[True, True, True, True, True, True, True, True, True, True, True,
		 .... //略

从上面例子可以看出来,反卷积和卷积其实是一样的,区别就几点:

  1. 反卷积进行卷积时,使用的参数是kernel的转置,但这项其实我们不需要关心
  2. 反卷积的padding参数 p ′ p' p 和 传统卷积的参数 p p p 的对应关系为 p ′ = k − 1 − p p'=k-1-p p=k1p。换句话说,卷积中的no padding对应反卷积的full padding;卷积中的full padding对应反卷积中的no padding。
  3. 从2中还可以看到一个事情,在反卷积中 p ′ p' p 不能无限大,最大值为 k − 1 − p k-1-p k1p。(其实也不是哦)

题外话,不感兴趣去可以跳过,在上面第三点我们说了 p ′ p' p 的最大值为 k − 1 − p k-1-p k1p,但实际你用pytorch实验会发现, p ′ p' p是可以大于这个值的。而这背后,相当于是对原始图像做了裁剪

在pytorch的nn.Conv2d中,padding是不能为负数的,会报错,但有时可能你需要让padding为负数(应该没这种需求吧),此时就可以用反卷积来实现,例如:

inputs = torch.ones(1, 1, 3, 3)
transposed_conv = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=1, padding=1, bias=False)
print(transposed_conv.state_dict())
outputs = transposed_conv(inputs)
print(outputs)
OrderedDict([('weight', tensor([[[[0.7700]]]]))])
tensor([[[[0.7700]]]], grad_fn=<SlowConvTranspose2DBackward0>)

上述例子中,我们传给网络的是图片:

[ 1 1 1 1 1 1 1 1 1 ] \begin{bmatrix} 1 & 1 &1 \\ 1 & 1 &1 \\ 1 & 1 &1 \end{bmatrix} 111111111

但是我们传的 p ′ = 1 , k = 1 p'=1, k=1 p=1,k=1,这样在传统卷积中相当于 p = k − 1 − p ′ = − 1 p=k-1-p'=-1 p=k1p=1,相当于 Conv2d(padding=-1),这样在做卷积时,其实是对图片 [ 1 ] [1] [1] 在做卷积(因为把周围裁掉了一圈),所以最后输出的尺寸为 ( 1 , 1 , 1 , 1 ) (1,1,1,1) (1,1,1,1)

这个题外话好像没啥实际用途,就当是更加理解反卷积中的padding参数吧。



反卷积的stride参数

反卷积的stride这个名字有些歧义,感觉起的不怎么好,具体什么意思可以看下图:

在这里插入图片描述在这里插入图片描述

左边是stride=1(称为No Stride)的反卷积,右边是stride=2 的反卷积。可以看到,他们的区别就是在原始图片的像素点中间填充了0。没错,在反卷积中,stride参数就是表示往输入图片每两个像素点中间填充0,而填充的数量就是 stride - 1

例如,我们对32x32的图片进行反卷积,stride=3,那么它就会在每两个像素点中间填充两个0,原始图片的大小就会变成 32 + 31 × 2 = 94 32+31\times 2=94 32+31×2=94。用代码实验一下:

inputs = torch.ones(1, 1, 32, 32)
transposed_conv = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=3, padding=2, stride=3, bias=False)
outputs = transposed_conv(inputs)
print(outputs.size())
torch.Size([1, 1, 92, 92])

我们来算一下,这里我使用了反卷积的Full Padding(相当于没有对原始图像的边缘进行padding),然后stride传了3,相当于在每两个像素点之间填充两个0,那么原始图像就会变成 94x94 的,然后kernal是3,所以最终的输出图片大小为 94 − 3 + 1 = 92 94-3+1=92 943+1=92.


反卷积总结

  1. 反卷积的作用是将原始图像进行扩大

  2. 反卷积与传统卷积的区别不大,主要区别有:

    2.1 padding的对应关系变了,反卷积的padding参数 p ′ = k − 1 − p p' = k-1-p p=k1p。其中 k k k 是kernel_size, p为传统卷积的padding值
    2.2 stride参数的含义不一样,在反卷积中stride表示在输入图像中间填充0,每两个像素点之间填充的数量为 stride-1
    2.3 除了上述的俩参数外,其他参数没啥区别





参考资料

Convolution arithmetic: https://github.com/vdumoulin/conv_arithmetic

A guide to convolution arithmetic for deep
learning
: https://arxiv.org/pdf/1603.07285.pdf

nn.ConvTranspose2d官方文档: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html

原网站

版权声明
本文为[iioSnail]所创,转载请带上原文链接,感谢
https://blog.csdn.net/zhaohongfei_358/article/details/125639916