当前位置:网站首页>golang源码分析(7):chan

golang源码分析(7):chan

2022-08-02 16:49:00 用户9710217

首先,我们先看channel的实现是在哪里?在runtime包下面咯,路径为:./src/runtime/chan.go 文件中,其中主要的结构体为:

/**

定义了 channel 的结构体

*/

type hchan struct {

qcount uint // total data in the queue 队列中的当前数据的个数

dataqsiz uint // size of the circular queue channel的大小

buf unsafe.Pointer // points to an array of dataqsiz elements 数据缓冲区,存放数据的环形数组

elemsize uint16 // channel 中数据类型的大小 (单个元素的大小)

closed uint32 // 表示 channel 是否关闭的标识位

elemtype *_type // element type 队列中的元素类型

// send 和 recieve 的索引,用于实现环形数组队列

sendx uint // send index 当前发送元素的索引

recvx uint // receive index 当前接收元素的索引

recvq waitq // list of recv waiters 接收等待队列;由 recv 行为(也就是 <-ch)阻塞在 channel 上的 goroutine 队列

sendq waitq // list of send waiters 发送等待队列;由 send 行为 (也就是 ch<-) 阻塞在 channel 上的 goroutine 队列

// lock protects all fields in hchan, as well as several

// fields in sudogs blocked on this channel.

// lock保护hchan中的所有字段,以及此通道上阻塞的sudoG中的几个字段。

//

// Do not change another G's status while holding this lock

// (in particular, do not ready a G), as this can deadlock

// with stack shrinking.

// 保持此锁定时不要更改另一个G的状态(特别是,没有准备好G),因为这可能会因堆栈收缩而死锁。

lock mutex

}

/**

发送及接收队列的结构体

等待队列的链表实现

*/

type waitq struct {

first *sudog

last *sudog

}

然后还有在 runtime包的 ./src/runtime/runtime2.go 中定义的 sudoG对应的结构体:

/**

对 G 的封装

*/

type sudog struct {

// The following fields are protected by the hchan.lock of the

// channel this sudog is blocking on. shrinkstack depends on

// this for sudogs involved in channel ops.

g *g

selectdone *uint32 // CAS to 1 to win select race (may point to stack)

next *sudog

prev *sudog

elem unsafe.Pointer // data element (may point to stack)

// The following fields are never accessed concurrently.

// For channels, waitlink is only accessed by g.

// For semaphores, all fields (including the ones above)

// are only accessed when holding a semaRoot lock.

acquiretime int64

releasetime int64

ticket uint32

parent *sudog // semaRoot binary tree

waitlink *sudog // g.waiting list or semaRoot

waittail *sudog // semaRoot

c *hchan // channel

}

有上述的结构体我们大致可以看出channel其实就是由一个环形数组实现的队列,用于存储消息元素;两个链表实现的 goroutine 等待队列,用于存储阻塞在 recv 和 send 操作上的 goroutine;一个互斥锁,用于各个属性变动的同步,只不过这个锁是一个轻量级锁。其中 recvq 是读操作阻塞在 channel 的 goroutine 列表,sendq 是写操作阻塞在 channel 的 goroutine 列表。列表的实现是 sudog,其实就是一个对 g 的结构的封装。

和select类似,hchan其实只是channel的头部。头部后面的一段内存连续的数组将作为channel的缓冲区,即用于存放channel数据的环形队列。qcount 和 dataqsiz 分别描述了缓冲区当前使用量【len】和容量【cap】。若channel是无缓冲的,则size是0,就没有这个环形队列了。如图:

下面我们来看看实例化一个channel的实现:

make:

make 的过程还比较简单,需要注意一点的是当元素不含指针的时候,会将整个 hchan 分配成一个连续的空间。下面就是make创建channel的代码实现:

//go:linkname reflect_makechan reflect.makechan

func reflect_makechan(t *chantype, size int64) *hchan {

return makechan(t, size)

}

/**

创建 chan

*/

func makechan(t *chantype, size int64) *hchan {

elem := t.elem

// compiler checks this but be safe.

if elem.size >= 1<<16 {

throw("makechan: invalid channel element type")

}

if hchanSize%maxAlign != 0 || elem.align > maxAlign {

throw("makechan: bad alignment")

}

if size < 0 || int64(uintptr(size)) != size || (elem.size > 0 && uintptr(size) > (_MaxMem-hchanSize)/elem.size) {

panic(plainError("makechan: size out of range"))

}

var c *hchan

if elem.kind&kindNoPointers != 0 || size == 0 {

// Allocate memory in one call.

// Hchan does not contain pointers interesting for GC in this case:

// buf points into the same allocation, elemtype is persistent.

// SudoG's are referenced from their owning thread so they can't be collected.

// TODO(dvyukov,rlh): Rethink when collector can move allocated objects.

c = (*hchan)(mallocgc(hchanSize+uintptr(size)*elem.size, nil, true))

if size > 0 && elem.size != 0 {

c.buf = add(unsafe.Pointer(c), hchanSize)

} else {

// race detector uses this location for synchronization

// Also prevents us from pointing beyond the allocation (see issue 9401).

c.buf = unsafe.Pointer(c)

}

} else {

c = new(hchan)

c.buf = newarray(elem, int(size))

}

c.elemsize = uint16(elem.size)

c.elemtype = elem

c.dataqsiz = uint(size)

if debugChan {

print("makechan: chan=", c, "; elemsize=", elem.size, "; elemalg=", elem.alg, "; dataqsiz=", size, "\n")

}

return c

}

可以看出来和之前说的select一样用了 //go:linkname 技巧,把函数关联到了 reflect包中的对应函数上了,这样纸就使用反射区出发整个make的入口。骚微过一下reflect包中真正make(chan type, int) 的函数吧

// MakeChan creates a new channel with the specified type and buffer size.

func MakeChan(typ Type, buffer int) Value {

if typ.Kind() != Chan {

panic("reflect.MakeChan of non-chan type")

}

if buffer < 0 {

panic("reflect.MakeChan: negative buffer size")

}

if typ.ChanDir() != BothDir {

panic("reflect.MakeChan: unidirectional channel type")

}

ch := makechan(typ.(*rtype), uint64(buffer))

return Value{typ.common(), ch, flag(Chan)}

}

// 这个才是被runtime中 用 //go:linkname 链接的函数

func makechan(typ *rtype, size uint64) (ch unsafe.Pointer)

劫争上面继续说,make中做了什么:首先两个 if 主要是一些异常情况的判断,第三个 if 也很明显,判断 size 大小是否小于 0 或者过大。int64(uintptr(size)) != size 这句也是判断 size 是否为负。

然后接着判断,如果channel中元素类型不为指针或者channel为无缓冲通道那么就将其分配在连续的内存区域。【使用 mallocgc 函数进行分配内存空间】顺便看下 mallocgc 函数(这个函数在select那章其实也用到的)的代码吧:

// Allocate an object of size bytes.

// Small objects are allocated from the per-P cache's free lists.

// Large objects (> 32 kB) are allocated straight from the heap.

/**

分配大小为字节的对象。

从每个P缓存的空闲列表中分配小对象。

大型对象(> 32 kB)直接从堆中分配。

*/

func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {

if gcphase == _GCmarktermination {

throw("mallocgc called with gcphase == _GCmarktermination")

}

if size == 0 {

return unsafe.Pointer(&zerobase)

}

if debug.sbrk != 0 {

align := uintptr(16)

if typ != nil {

align = uintptr(typ.align)

}

return persistentalloc(size, align, &memstats.other_sys)

}

// assistG is the G to charge for this allocation, or nil if

// GC is not currently active.

var assistG *g

if gcBlackenEnabled != 0 {

// Charge the current user G for this allocation.

assistG = getg()

if assistG.m.curg != nil {

assistG = assistG.m.curg

}

// Charge the allocation against the G. We'll account

// for internal fragmentation at the end of mallocgc.

assistG.gcAssistBytes -= int64(size)

if assistG.gcAssistBytes < 0 {

// This G is in debt. Assist the GC to correct

// this before allocating. This must happen

// before disabling preemption.

gcAssistAlloc(assistG)

}

}

// Set mp.mallocing to keep from being preempted by GC.

mp := acquirem()

if mp.mallocing != 0 {

throw("malloc deadlock")

}

if mp.gsignal == getg() {

throw("malloc during signal")

}

mp.mallocing = 1

shouldhelpgc := false

dataSize := size

c := gomcache()

var x unsafe.Pointer

noscan := typ == nil || typ.kind&kindNoPointers != 0

if size <= maxSmallSize {

if noscan && size < maxTinySize {

// Tiny allocator.

//

// Tiny allocator combines several tiny allocation requests

// into a single memory block. The resulting memory block

// is freed when all subobjects are unreachable. The subobjects

// must be noscan (don't have pointers), this ensures that

// the amount of potentially wasted memory is bounded.

//

// Size of the memory block used for combining (maxTinySize) is tunable.

// Current setting is 16 bytes, which relates to 2x worst case memory

// wastage (when all but one subobjects are unreachable).

// 8 bytes would result in no wastage at all, but provides less

// opportunities for combining.

// 32 bytes provides more opportunities for combining,

// but can lead to 4x worst case wastage.

// The best case winning is 8x regardless of block size.

//

// Objects obtained from tiny allocator must not be freed explicitly.

// So when an object will be freed explicitly, we ensure that

// its size >= maxTinySize.

//

// SetFinalizer has a special case for objects potentially coming

// from tiny allocator, it such case it allows to set finalizers

// for an inner byte of a memory block.

//

// The main targets of tiny allocator are small strings and

// standalone escaping variables. On a json benchmark

// the allocator reduces number of allocations by ~12% and

// reduces heap size by ~20%.

off := c.tinyoffset

// Align tiny pointer for required (conservative) alignment.

if size&7 == 0 {

off = round(off, 8)

} else if size&3 == 0 {

off = round(off, 4)

} else if size&1 == 0 {

off = round(off, 2)

}

if off+size <= maxTinySize && c.tiny != 0 {

// The object fits into existing tiny block.

x = unsafe.Pointer(c.tiny + off)

c.tinyoffset = off + size

c.local_tinyallocs++

mp.mallocing = 0

releasem(mp)

return x

}

// Allocate a new maxTinySize block.

span := c.alloc[tinySpanClass]

v := nextFreeFast(span)

if v == 0 {

v, _, shouldhelpgc = c.nextFree(tinySpanClass)

}

x = unsafe.Pointer(v)

(*[2]uint64)(x)[0] = 0

(*[2]uint64)(x)[1] = 0

// See if we need to replace the existing tiny block with the new one

// based on amount of remaining free space.

if size < c.tinyoffset || c.tiny == 0 {

c.tiny = uintptr(x)

c.tinyoffset = size

}

size = maxTinySize

} else {

var sizeclass uint8

if size <= smallSizeMax-8 {

sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]

} else {

sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]

}

size = uintptr(class_to_size[sizeclass])

spc := makeSpanClass(sizeclass, noscan)

span := c.alloc[spc]

v := nextFreeFast(span)

if v == 0 {

v, span, shouldhelpgc = c.nextFree(spc)

}

x = unsafe.Pointer(v)

if needzero && span.needzero != 0 {

memclrNoHeapPointers(unsafe.Pointer(v), size)

}

}

} else {

var s *mspan

shouldhelpgc = true

systemstack(func() {

s = largeAlloc(size, needzero, noscan)

})

s.freeindex = 1

s.allocCount = 1

x = unsafe.Pointer(s.base())

size = s.elemsize

}

var scanSize uintptr

if !noscan {

// If allocating a defer+arg block, now that we've picked a malloc size

// large enough to hold everything, cut the "asked for" size down to

// just the defer header, so that the GC bitmap will record the arg block

// as containing nothing at all (as if it were unused space at the end of

// a malloc block caused by size rounding).

// The defer arg areas are scanned as part of scanstack.

if typ == deferType {

dataSize = unsafe.Sizeof(_defer{})

}

heapBitsSetType(uintptr(x), size, dataSize, typ)

if dataSize > typ.size {

// Array allocation. If there are any

// pointers, GC has to scan to the last

// element.

if typ.ptrdata != 0 {

scanSize = dataSize - typ.size + typ.ptrdata

}

} else {

scanSize = typ.ptrdata

}

c.local_scan += scanSize

}

// Ensure that the stores above that initialize x to

// type-safe memory and set the heap bits occur before

// the caller can make x observable to the garbage

// collector. Otherwise, on weakly ordered machines,

// the garbage collector could follow a pointer to x,

// but see uninitialized memory or stale heap bits.

publicationBarrier()

// Allocate black during GC.

// All slots hold nil so no scanning is needed.

// This may be racing with GC so do it atomically if there can be

// a race marking the bit.

if gcphase != _GCoff {

gcmarknewobject(uintptr(x), size, scanSize)

}

if raceenabled {

racemalloc(x, size)

}

if msanenabled {

msanmalloc(x, size)

}

mp.mallocing = 0

releasem(mp)

if debug.allocfreetrace != 0 {

tracealloc(x, size, typ)

}

if rate := MemProfileRate; rate > 0 {

if size < uintptr(rate) && int32(size) < c.next_sample {

c.next_sample -= int32(size)

} else {

mp := acquirem()

profilealloc(mp, x, size)

releasem(mp)

}

}

if assistG != nil {

// Account for internal fragmentation in the assist

// debt now that we know it.

assistG.gcAssistBytes -= int64(size - dataSize)

}

if shouldhelpgc {

if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {

gcStart(gcBackgroundMode, t)

}

}

return x

}

否则,在创建chan需要知道数据类型和缓冲区大小。channel 和 channel.buf 是分别进行分配的。对应上面的结构图 newarray 将生成这个环形队列。之所以要分开指针类型缓冲区主要是为了区分gc操作,需要将它设置为flagNoScan。并且指针大小固定,可以跟hchan头部一起分配内存,不需要先new(hchan)再newarry。

我们再看下 newarray函数:

func newarray(typ *_type, n int) unsafe.Pointer {

if n < 0 || uintptr(n) > maxSliceCap(typ.size) {

panic(plainError("runtime: allocation size out of range"))

}

return mallocgc(typ.size*uintptr(n), typ, true)

}

可以看出来,其实newarray函数底层也是调了 mallocgc 函数来分配内存空间的。

总结:make chan 的过程是在堆上进行分配,返回是一个 hchan 的指针。

声明但不make初始化的chan是nil chan。读写nil chan会阻塞,关闭nil chan会panic。

chan的读写:

从实现中可见读写chan都要lock,这跟读写共享内存一样都有lock的开销。

数据在chan中的传递方向从chansend开始从入参最终写入recvq中的goroutine的数据域,这中间如果发生阻塞可能先写入sendq中goroutine的数据域等待中转。

从gopark返回后sudog对象可重用。

首先,我们来看下对应chan的读写函数的定义:

sned:

// entry point for c <- x from compiled code

//go:nosplit

func chansend1(c *hchan, elem unsafe.Pointer) {

chansend(c, elem, true, getcallerpc(unsafe.Pointer(&c)))

}

/*

* generic single channel send/recv

* If block is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run

* the operation; we'll see that it's now closed.

* 通用单通道发送/接收

* 如果阻塞不是nil,则将不会休眠,但如果无法完成则返回。

* 当睡眠中涉及的通道关闭时,睡眠可以通过g.param == nil唤醒。 最简单的循环和重新运行操作; 我们会

* 看到它现在已经关闭了。

*/

func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

// 当 channel 未初始化或为 nil 时,向其中发送数据将会永久阻塞

if c == nil {

if !block {

return false

}

// gopark 会使当前 goroutine 休眠,并通过 unlockf 唤醒,但是此时传入的 unlockf 为 nil, 因此,goroutine 会一直休眠

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)

throw("unreachable")

}

if debugChan {

print("chansend: chan=", c, "\n")

}

if raceenabled {

racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))

}

// Fast path: check for failed non-blocking operation without acquiring the lock.

//

// After observing that the channel is not closed, we observe that the channel is

// not ready for sending. Each of these observations is a single word-sized read

// (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).

// Because a closed channel cannot transition from 'ready for sending' to

// 'not ready for sending', even if the channel is closed between the two observations,

// they imply a moment between the two when the channel was both not yet closed

// and not ready for sending. We behave as if we observed the channel at that moment,

// and report that the send cannot proceed.

//

// It is okay if the reads are reordered here: if we observe that the channel is not

// ready for sending and then observe that it is not closed, that implies that the

// channel wasn't closed during the first observation.

if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) ||

(c.dataqsiz > 0 && c.qcount == c.dataqsiz)) {

return false

}

var t0 int64

if blockprofilerate > 0 {

t0 = cputicks()

}

// 获取同步锁

lock(&c.lock)

// 向已经关闭的 channel 发送消息会产生 panic

if c.closed != 0 {

unlock(&c.lock)

panic(plainError("send on closed channel"))

}

// CASE1: 当有 goroutine 在 recv 队列上等待时,跳过缓存队列,将消息直接发给 reciever goroutine

if sg := c.recvq.dequeue(); sg != nil {

// Found a waiting receiver. We pass the value we want to send

// directly to the receiver, bypassing the channel buffer (if any).

// 找到了等待receiver。 我们将要发送的值直接传递给receiver,绕过通道缓冲区(如果有的话)。

send(c, sg, ep, func() { unlock(&c.lock) }, 3)

return true

}

// CASE2: 缓存队列未满,则将消息复制到缓存队列上

if c.qcount < c.dataqsiz {

// Space is available in the channel buffer. Enqueue the element to send.

qp := chanbuf(c, c.sendx)

if raceenabled {

raceacquire(qp)

racerelease(qp)

}

typedmemmove(c.elemtype, qp, ep)

c.sendx++

if c.sendx == c.dataqsiz {

c.sendx = 0

}

c.qcount++

unlock(&c.lock)

return true

}

if !block {

unlock(&c.lock)

return false

}

// CASE3: 缓存队列已满,将goroutine 加入 send 队列

// 初始化 sudog

// Block on the channel. Some receiver will complete our operation for us.

gp := getg()

mysg := acquireSudog()

mysg.releasetime = 0

if t0 != 0 {

mysg.releasetime = -1

}

// No stack splits between assigning elem and enqueuing mysg

// on gp.waiting where copystack can find it.

mysg.elem = ep

mysg.waitlink = nil

mysg.g = gp

mysg.selectdone = nil

mysg.c = c

gp.waiting = mysg

gp.param = nil

// 加入队列

c.sendq.enqueue(mysg)

// 休眠

goparkunlock(&c.lock, "chan send", traceEvGoBlockSend, 3)

// 唤醒 goroutine

// someone woke us up.

if mysg != gp.waiting {

throw("G waiting list is corrupted")

}

gp.waiting = nil

if gp.param == nil {

if c.closed == 0 {

throw("chansend: spurious wakeup")

}

panic(plainError("send on closed channel"))

}

gp.param = nil

if mysg.releasetime > 0 {

blockevent(mysg.releasetime-t0, 2)

}

mysg.c = nil

releaseSudog(mysg)

return true

}

// send processes a send operation on an empty channel c.

// The value ep sent by the sender is copied to the receiver sg.

// The receiver is then woken up to go on its merry way.

// Channel c must be empty and locked. send unlocks c with unlockf.

// sg must already be dequeued from c.

// ep must be non-nil and point to the heap or the caller's stack.

func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {

if raceenabled {

if c.dataqsiz == 0 {

racesync(c, sg)

} else {

// Pretend we go through the buffer, even though

// we copy directly. Note that we need to increment

// the head/tail locations only when raceenabled.

qp := chanbuf(c, c.recvx)

raceacquire(qp)

racerelease(qp)

raceacquireg(sg.g, qp)

racereleaseg(sg.g, qp)

c.recvx++

if c.recvx == c.dataqsiz {

c.recvx = 0

}

c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz

}

}

if sg.elem != nil {

sendDirect(c.elemtype, sg, ep)

sg.elem = nil

}

gp := sg.g

unlockf()

gp.param = unsafe.Pointer(sg)

if sg.releasetime != 0 {

sg.releasetime = cputicks()

}

goready(gp, skip+1)

}

send 有以下四种情况:【都是对不为nil的chan的情况】

向已经close的chan写数据,抛panic。

有 goroutine 阻塞在 channel recv 队列上,此时缓存队列( hchan.buf)为空(即缓冲区内无元素),直接将消息发送给 reciever goroutine,只产生一次复制

当 channel 缓存队列( hchan.buf )有剩余空间时,将数据放到队列里,等待接收,接收后总共产生两次复制

当 channel 缓存队列( hchan.buf )已满时,将当前 goroutine 加入 send 队列并阻塞。

【第一种情况】:向已经close的chan写数据,会抛panic

if c.closed != 0 {

unlock(&c.lock)

panic(plainError("send on closed channel"))

}

【第二种情况】:从当前 channel 的等待队列中取出等待的 goroutine,然后调用 send。goready 负责唤醒 goroutine

if sg := c.recvq.dequeue(); sg != nil {

// Found a waiting receiver. We pass the value we want to send

// directly to the receiver, bypassing the channel buffer (if any).

send(c, sg, ep, func() { unlock(&c.lock) }, 3)

return true

}

// 看send 部分逻辑

func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {

if raceenabled {

if c.dataqsiz == 0 {

racesync(c, sg)

} else {

// Pretend we go through the buffer, even though

// we copy directly. Note that we need to increment

// the head/tail locations only when raceenabled.

qp := chanbuf(c, c.recvx)

raceacquire(qp)

racerelease(qp)

raceacquireg(sg.g, qp)

racereleaseg(sg.g, qp)

c.recvx++

if c.recvx == c.dataqsiz {

c.recvx = 0

}

c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz

}

}

if sg.elem != nil {

sendDirect(c.elemtype, sg, ep)

sg.elem = nil

}

gp := sg.g

unlockf()

gp.param = unsafe.Pointer(sg)

if sg.releasetime != 0 {

sg.releasetime = cputicks()

}

goready(gp, skip+1)

}

【第三种情况】:通过比较 qcount 和 dataqsiz 来判断 hchan.buf 是否还有可用空间。除此之后还需要调整一下 sendx 和 qcount

if c.qcount < c.dataqsiz {

// Space is available in the channel buffer. Enqueue the element to send.

qp := chanbuf(c, c.sendx)

if raceenabled {

raceacquire(qp)

racerelease(qp)

}

typedmemmove(c.elemtype, qp, ep)

c.sendx++

if c.sendx == c.dataqsiz {

c.sendx = 0

}

c.qcount++

unlock(&c.lock)

return true

}

【第四种情况】:当 channel 缓存队列( hchan.buf )已满时,将当前 goroutine 加入 send 队列并阻塞。

// Block on the channel. Some receiver will complete our operation for us.

gp := getg()

mysg := acquireSudog()

mysg.releasetime = 0

if t0 != 0 {

mysg.releasetime = -1

}

// No stack splits between assigning elem and enqueuing mysg

// on gp.waiting where copystack can find it.

// 一些初始化工作

mysg.elem = ep

mysg.waitlink = nil

mysg.g = gp

mysg.selectdone = nil

mysg.c = c

gp.waiting = mysg

gp.param = nil

c.sendq.enqueue(mysg) // 当前 goroutine 如等待队列

goparkunlock(&c.lock, "chan send", traceEvGoBlockSend, 3) //休眠

receive:

// entry points for <- c from compiled code

//go:nosplit

func chanrecv1(c *hchan, elem unsafe.Pointer) {

chanrecv(c, elem, true)

}

//go:nosplit

func chanrecv2(c *hchan, elem unsafe.Pointer) (received bool) {

_, received = chanrecv(c, elem, true)

return

}

// chanrecv receives on channel c and writes the received data to ep.

// ep may be nil, in which case received data is ignored.

// If block == false and no elements are available, returns (false, false).

// Otherwise, if c is closed, zeros *ep and returns (true, false).

// Otherwise, fills in *ep with an element and returns (true, true).

// A non-nil ep must point to the heap or the caller's stack.

func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {

// raceenabled: don't need to check ep, as it is always on the stack

// or is new memory allocated by reflect.

if debugChan {

print("chanrecv: chan=", c, "\n")

}

// 从 nil 的 channel 中接收消息,永久阻塞

if c == nil {

if !block {

return

}

gopark(nil, nil, "chan receive (nil chan)", traceEvGoStop, 2)

throw("unreachable")

}

// Fast path: check for failed non-blocking operation without acquiring the lock.

//

// After observing that the channel is not ready for receiving, we observe that the

// channel is not closed. Each of these observations is a single word-sized read

// (first c.sendq.first or c.qcount, and second c.closed).

// Because a channel cannot be reopened, the later observation of the channel

// being not closed implies that it was also not closed at the moment of the

// first observation. We behave as if we observed the channel at that moment

// and report that the receive cannot proceed.

//

// The order of operations is important here: reversing the operations can lead to

// incorrect behavior when racing with a close.

if !block && (c.dataqsiz == 0 && c.sendq.first == nil ||

c.dataqsiz > 0 && atomic.Loaduint(&c.qcount) == 0) &&

atomic.Load(&c.closed) == 0 {

return

}

var t0 int64

if blockprofilerate > 0 {

t0 = cputicks()

}

lock(&c.lock)

// CASE1: 从已经 close 且为空的 channel recv 数据,返回空值

if c.closed != 0 && c.qcount == 0 {

if raceenabled {

raceacquire(unsafe.Pointer(c))

}

unlock(&c.lock)

if ep != nil {

typedmemclr(c.elemtype, ep)

}

return true, false

}

// CASE2: send 队列不为空

// CASE2.a: 缓存队列为空,直接从 sender recv 元素

// CASE2.b: 缓存队列不为空,此时只有可能是缓存队列已满,从队列头取出元素,

//并唤醒 sender 将元素写入缓存队列尾部。由于为环形队列,因此,队列满时只需要将队列头复制给 reciever,

//同时将 sender 元素复制到该位置,并移动队列头尾索引,不需要移动队列元素

if sg := c.sendq.dequeue(); sg != nil {

// Found a waiting sender. If buffer is size 0, receive value

// directly from sender. Otherwise, receive from head of queue

// and add sender's value to the tail of the queue (both map to

// the same buffer slot because the queue is full).

recv(c, sg, ep, func() { unlock(&c.lock) }, 3)

return true, true

}

// CASE3: 缓存队列不为空,直接从队列取元素,移动头索引

if c.qcount > 0 {

// Receive directly from queue

qp := chanbuf(c, c.recvx)

if raceenabled {

raceacquire(qp)

racerelease(qp)

}

if ep != nil {

typedmemmove(c.elemtype, ep, qp)

}

typedmemclr(c.elemtype, qp)

c.recvx++

if c.recvx == c.dataqsiz {

c.recvx = 0

}

c.qcount--

unlock(&c.lock)

return true, true

}

if !block {

unlock(&c.lock)

return false, false

}

// CASE4: 缓存队列为空,将 goroutine 加入 recv 队列,并阻塞

// no sender available: block on this channel.

gp := getg()

mysg := acquireSudog()

mysg.releasetime = 0

if t0 != 0 {

mysg.releasetime = -1

}

// No stack splits between assigning elem and enqueuing mysg

// on gp.waiting where copystack can find it.

mysg.elem = ep

mysg.waitlink = nil

gp.waiting = mysg

mysg.g = gp

mysg.selectdone = nil

mysg.c = c

gp.param = nil

c.recvq.enqueue(mysg)

goparkunlock(&c.lock, "chan receive", traceEvGoBlockRecv, 3)

// someone woke us up

if mysg != gp.waiting {

throw("G waiting list is corrupted")

}

gp.waiting = nil

if mysg.releasetime > 0 {

blockevent(mysg.releasetime-t0, 2)

}

closed := gp.param == nil

gp.param = nil

mysg.c = nil

releaseSudog(mysg)

return true, !closed

}

// recv processes a receive operation on a full channel c.

// There are 2 parts:

// 1) The value sent by the sender sg is put into the channel

// and the sender is woken up to go on its merry way.

// 2) The value received by the receiver (the current G) is

// written to ep.

// For synchronous channels, both values are the same.

// For asynchronous channels, the receiver gets its data from

// the channel buffer and the sender's data is put in the

// channel buffer.

// Channel c must be full and locked. recv unlocks c with unlockf.

// sg must already be dequeued from c.

// A non-nil ep must point to the heap or the caller's stack.

func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {

if c.dataqsiz == 0 {

if raceenabled {

racesync(c, sg)

}

if ep != nil {

// copy data from sender

recvDirect(c.elemtype, sg, ep)

}

} else {

// Queue is full. Take the item at the

// head of the queue. Make the sender enqueue

// its item at the tail of the queue. Since the

// queue is full, those are both the same slot.

qp := chanbuf(c, c.recvx)

if raceenabled {

raceacquire(qp)

racerelease(qp)

raceacquireg(sg.g, qp)

racereleaseg(sg.g, qp)

}

// copy data from queue to receiver

if ep != nil {

typedmemmove(c.elemtype, ep, qp)

}

// copy data from sender to queue

typedmemmove(c.elemtype, qp, sg.elem)

c.recvx++

if c.recvx == c.dataqsiz {

c.recvx = 0

}

c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz

}

sg.elem = nil

gp := sg.g

unlockf()

gp.param = unsafe.Pointer(sg)

if sg.releasetime != 0 {

sg.releasetime = cputicks()

}

goready(gp, skip+1)

}

receive 有以下四种情况:【都是对不为nil的chan的情况】

从已经 close 且为空的 channel recv 数据,返回空值

当 send 队列不为空,分两种情况:【一】缓存队列为空,直接从 send 队列的sender中接收数据 元素;【二】缓存队列不为空,此时只有可能是缓存队列已满,从队列头取出元素,并唤醒 sender 将元素写入缓存队列尾部。由于为环形队列,因此,队列满时只需要将队列头复制给 reciever,同时将 sender 元素复制到该位置,并移动队列头尾索引,不需要移动队列元素。【这就是为什么使用环形队列的原因】

缓存队列不为空,直接从队列取队头元素,移动头索引。

缓存队列为空,将 goroutine 加入 recv 队列,并阻塞。

【第一种情况】:从 closed channel 接收数据,如果 channel 中还有数据,接着走下面的流程。如果已经没有数据了,则返回默认值。使用 ok-idiom 方式读取的时候,第二个参数返回 false。

if c.closed != 0 && c.qcount == 0 {

if raceenabled {

raceacquire(unsafe.Pointer(c))

}

unlock(&c.lock)

if ep != nil {

typedmemclr(c.elemtype, ep)

}

return true, false

}

【第二种情况】:当前有send goroutine 阻塞在 channel 上,直接调 recv函数【a】当缓存队列尾空时,直接从 send 队列的sender中接收数据 元素。【b】缓存队列不为空,此时只有可能是缓存队列已满,从队列头取出元素,并唤醒 sender 将元素写入缓存队列尾部。同时更改队列头索引。

if sg := c.sendq.dequeue(); sg != nil {

// Found a waiting sender. If buffer is size 0, receive value

// directly from sender. Otherwise, receive from head of queue

// and add sender's value to the tail of the queue (both map to

// the same buffer slot because the queue is full).

recv(c, sg, ep, func() { unlock(&c.lock) }, 3)

return true, true

}

func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {

if c.dataqsiz == 0 {

if raceenabled {

racesync(c, sg)

}

if ep != nil {

// copy data from sender

recvDirect(c.elemtype, sg, ep)

}

} else {

// Queue is full. Take the item at the

// head of the queue. Make the sender enqueue

// its item at the tail of the queue. Since the

// queue is full, those are both the same slot.

qp := chanbuf(c, c.recvx)

if raceenabled {

raceacquire(qp)

racerelease(qp)

raceacquireg(sg.g, qp)

racereleaseg(sg.g, qp)

}

// copy data from queue to receiver

if ep != nil {

typedmemmove(c.elemtype, ep, qp)

}

// copy data from sender to queue

typedmemmove(c.elemtype, qp, sg.elem)

c.recvx++

if c.recvx == c.dataqsiz {

c.recvx = 0

}

c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz

}

sg.elem = nil

gp := sg.g

unlockf()

gp.param = unsafe.Pointer(sg)

if sg.releasetime != 0 {

sg.releasetime = cputicks()

}

goready(gp, skip+1)

}

【第三种情况】:buf 中有可用数据。直接从队列取队头元素,移动头索引。

if c.qcount > 0 {

// Receive directly from queue

qp := chanbuf(c, c.recvx)

if raceenabled {

raceacquire(qp)

racerelease(qp)

}

if ep != nil {

typedmemmove(c.elemtype, ep, qp)

}

typedmemclr(c.elemtype, qp)

c.recvx++

if c.recvx == c.dataqsiz {

c.recvx = 0

}

c.qcount--

unlock(&c.lock)

return true, true

}

【第四种情况】:buf 为空,将当前 goroutine 加入 recv 队列并阻塞。

// no sender available: block on this channel.

gp := getg()

mysg := acquireSudog()

mysg.releasetime = 0

if t0 != 0 {

mysg.releasetime = -1

}

// No stack splits between assigning elem and enqueuing mysg

// on gp.waiting where copystack can find it.

mysg.elem = ep

mysg.waitlink = nil

gp.waiting = mysg

mysg.g = gp

mysg.selectdone = nil

mysg.c = c

gp.param = nil

c.recvq.enqueue(mysg)

goparkunlock(&c.lock, "chan receive", traceEvGoBlockRecv, 3)

close:

下面,我们来看看关闭通道具体的实现:

//go:linkname reflect_chanclose reflect.chanclose

func reflect_chanclose(c *hchan) {

closechan(c)

}

func closechan(c *hchan) {

if c == nil {

panic(plainError("close of nil channel"))

}

lock(&c.lock)

// 重复 close,产生 panic

if c.closed != 0 {

unlock(&c.lock)

panic(plainError("close of closed channel"))

}

if raceenabled {

callerpc := getcallerpc(unsafe.Pointer(&c))

racewritepc(unsafe.Pointer(c), callerpc, funcPC(closechan))

racerelease(unsafe.Pointer(c))

}

c.closed = 1

var glist *g

// 唤醒所有 reciever

// release all readers

for {

sg := c.recvq.dequeue()

if sg == nil {

break

}

if sg.elem != nil {

typedmemclr(c.elemtype, sg.elem)

sg.elem = nil

}

if sg.releasetime != 0 {

sg.releasetime = cputicks()

}

gp := sg.g

gp.param = nil

if raceenabled {

raceacquireg(gp, unsafe.Pointer(c))

}

gp.schedlink.set(glist)

glist = gp

}

// 唤醒所有 sender,并产生 panic

// release all writers (they will panic)

for {

sg := c.sendq.dequeue()

if sg == nil {

break

}

sg.elem = nil

if sg.releasetime != 0 {

sg.releasetime = cputicks()

}

gp := sg.g

gp.param = nil

if raceenabled {

raceacquireg(gp, unsafe.Pointer(c))

}

gp.schedlink.set(glist)

glist = gp

}

unlock(&c.lock)

// 唤醒所哟叜glist中的goroutine

// Ready all Gs now that we've dropped the channel lock.

for glist != nil {

gp := glist

glist = glist.schedlink.ptr()

gp.schedlink = 0

goready(gp, 3)

}

}

close channel 的工作

将 c.closed 设置为 1。

唤醒 recvq 队列里面的阻塞 goroutine

唤醒 sendq 队列里面的阻塞 goroutine

处理方式是分别遍历 recvq 和 sendq 队列,将所有的 goroutine 放到 glist 队列中,最后唤醒 glist 队列中的 goroutine。

OK上述就是channel的源码分析,我们下面通过几张图来看一下chan的工作原理:

send的流程:

close的流程:

以上就是对 chan的底层操作原理及讲解。

问chan是否线程安全的呢?是线程安全的,因为其hchan结构汇总内置了mutex,且send 及 recv 及close 的操作中均会去 加锁/解锁 等动作。

原网站

版权声明
本文为[用户9710217]所创,转载请带上原文链接,感谢
https://cloud.tencent.com/developer/article/2064593