当前位置:网站首页>贝叶斯定律
贝叶斯定律
2022-07-07 04:45:00 【Steven迪文】
1.概率理论
先复习一些概率理论。
联合概率:事件 A 和事件 B 同时发生的概率;也叫做乘积法则。
P ( A , B ) = P ( A ∩ B ) = P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) P(A,B) = P(A \cap B) = P(A|B)P(B) = P(B|A)P(A) P(A,B)=P(A∩B)=P(A∣B)P(B)=P(B∣A)P(A)
求和规则:事件 A 和 事件 B不同时发生的概率。
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A \cup B) = P(A) + P(B)-P(A\cap B) P(A∪B)=P(A)+P(B)−P(A∩B)
如果 A 和 B 是互相排斥的:
P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cup B) = P(A) + P(B) P(A∪B)=P(A)+P(B)
全概率:假如事件 A 的发生可能由多种可能的 事件B 导致。
P ( A ) = ∑ i n P ( A ∣ B i ) P ( B i ) P(A) = \sum_{i} ^nP(A|B_{i})P(B_{i}) P(A)=i∑nP(A∣Bi)P(Bi)
条件概率:给定事件 B 事件 A 发生的概率。
P ( A ∣ B ) = P ( A , B ) P ( B ) P(A|B)=\frac{P(A,B)}{P(B)} P(A∣B)=P(B)P(A,B)
2. 贝叶斯定律
在机器学习中,给定观测的训练数据 B,我们经常感兴趣于求最佳假设空间 A。
最佳的假设空间就是最可能的假设空间,也就是给定训练数据 B,把各种训练数据 B 在假设空间 A 中的先验概率相加。
根据以上定义,求假设空间 A 的概率如下:
P ( A ) = ∑ n P ( A ∣ B i ) P ( B i ) P(A) = \sum_{n} P(A|B_{i})P(B_{i}) P(A)=n∑P(A∣Bi)P(Bi)
是不是很熟悉?
这其实就是全概率公式,事件 A 的发生可能由数据 B 1 B_1 B1, B 2 B_2 B2… … B n B_n Bn
多种原因导致。
对于给定训练数据 B, 求假设空间 A 的概率,贝叶斯定理提供了一个更直接的方法。
贝叶斯定律使用:
- 假设空间 A 的先验概率 P ( A ) P(A) P(A)
- 以及观测数据的先验概率概率 P ( B ) P(B) P(B)
- 给定假设空间 A,观测数据 B 的概率 P ( B ∣ A ) P(B|A) P(B∣A)
求给定观测数据 B,求假设空间 A 的概率 P ( A ∣ B ) P(A|B) P(A∣B),也称作后验概率,因为它反映了给定数据 B,对假设空间 A 概率的影响。
与先验概率相反, P(A) 与 B 是独立的。
贝叶斯公式:
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B)=\frac{P(B|A)P(A)}{P(B)} P(A∣B)=P(B)P(B∣A)P(A)
贝叶斯公式的推导也很简单,结合第一部分我们提到的条件概率和联合概率便可求出。
条件概率:
P ( A ∣ B ) = P ( A , B ) P ( B ) P(A|B)=\frac{P(A,B)}{P(B)} P(A∣B)=P(B)P(A,B)
联合概率:
P ( A , B ) = P ( B ∣ A ) P ( A ) {P(A,B)} = P(B|A)P(A) P(A,B)=P(B∣A)P(A)
3. 最大后验概率 MAP
有时,给定数据B,想要求假设空间 A 中的最可能的假设称为最大后验概率 MAP(Maximum a Posteriori)。
A M A P = a r g m a x P ( A ∣ B ) A_{MAP} = argmax P(A|B) AMAP=argmaxP(A∣B)
也就是求:
= a r g m a x P ( B ∣ A ) P ( A ) P ( B ) = argmax \frac{P(B|A)P(A)}{P(B)} =argmaxP(B)P(B∣A)P(A)
去掉 P ( B ) P(B) P(B)是因为其与假设 A 是独立的。
= a r g m a x P ( B ∣ A ) P ( A ) = argmax P(B|A)P(A) =argmaxP(B∣A)P(A)
边栏推荐
- nacos
- 2022 tea master (intermediate) examination questions and mock examination
- [Stanford Jiwang cs144 project] lab3: tcpsender
- 2022制冷与空调设备运行操作复训题库及答案
- Padavan manually installs PHP
- [UVM basics] summary of important knowledge points of "UVM practice" (continuous update...)
- Open source ecosystem | create a vibrant open source community and jointly build a new open source ecosystem!
- [UVM practice] Chapter 2: a simple UVM verification platform (2) only driver verification platform
- 芯片资料 网站 易特创芯
- Yugu p1020 missile interception (binary search)
猜你喜欢
随机推荐
CentOS7下安装PostgreSQL11数据库
[OBS] win capture requires winrt
Leanote private cloud note building
自定义类加载器加载网络Class
Pytest+allure+jenkins environment -- completion of pit filling
Cnopendata list data of Chinese colleges and Universities
Chip design data download
[Stanford Jiwang cs144 project] lab4: tcpconnection
Use and analysis of dot function in numpy
JSON data flattening pd json_ normalize
2022 National latest fire-fighting facility operator (primary fire-fighting facility operator) simulation questions and answers
B. Value sequence thinking
MySQL multi column index (composite index) features and usage scenarios
C语言航班订票系统
Linux server development, MySQL index principle and optimization
Common method signatures and meanings of Iterable, collection and list
Sign up now | oar hacker marathon phase III, waiting for your challenge
Qt学习27 应用程序中的主窗口
Ansible
Leetcode 43 String multiplication (2022.02.12)