当前位置:网站首页>贝叶斯定律
贝叶斯定律
2022-07-07 04:45:00 【Steven迪文】
1.概率理论
先复习一些概率理论。
联合概率:事件 A 和事件 B 同时发生的概率;也叫做乘积法则。
P ( A , B ) = P ( A ∩ B ) = P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) P(A,B) = P(A \cap B) = P(A|B)P(B) = P(B|A)P(A) P(A,B)=P(A∩B)=P(A∣B)P(B)=P(B∣A)P(A)
求和规则:事件 A 和 事件 B不同时发生的概率。
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A \cup B) = P(A) + P(B)-P(A\cap B) P(A∪B)=P(A)+P(B)−P(A∩B)
如果 A 和 B 是互相排斥的:
P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cup B) = P(A) + P(B) P(A∪B)=P(A)+P(B)
全概率:假如事件 A 的发生可能由多种可能的 事件B 导致。
P ( A ) = ∑ i n P ( A ∣ B i ) P ( B i ) P(A) = \sum_{i} ^nP(A|B_{i})P(B_{i}) P(A)=i∑nP(A∣Bi)P(Bi)
条件概率:给定事件 B 事件 A 发生的概率。
P ( A ∣ B ) = P ( A , B ) P ( B ) P(A|B)=\frac{P(A,B)}{P(B)} P(A∣B)=P(B)P(A,B)
2. 贝叶斯定律
在机器学习中,给定观测的训练数据 B,我们经常感兴趣于求最佳假设空间 A。
最佳的假设空间就是最可能的假设空间,也就是给定训练数据 B,把各种训练数据 B 在假设空间 A 中的先验概率相加。
根据以上定义,求假设空间 A 的概率如下:
P ( A ) = ∑ n P ( A ∣ B i ) P ( B i ) P(A) = \sum_{n} P(A|B_{i})P(B_{i}) P(A)=n∑P(A∣Bi)P(Bi)
是不是很熟悉?
这其实就是全概率公式,事件 A 的发生可能由数据 B 1 B_1 B1, B 2 B_2 B2… … B n B_n Bn
多种原因导致。
对于给定训练数据 B, 求假设空间 A 的概率,贝叶斯定理提供了一个更直接的方法。
贝叶斯定律使用:
- 假设空间 A 的先验概率 P ( A ) P(A) P(A)
- 以及观测数据的先验概率概率 P ( B ) P(B) P(B)
- 给定假设空间 A,观测数据 B 的概率 P ( B ∣ A ) P(B|A) P(B∣A)
求给定观测数据 B,求假设空间 A 的概率 P ( A ∣ B ) P(A|B) P(A∣B),也称作后验概率,因为它反映了给定数据 B,对假设空间 A 概率的影响。
与先验概率相反, P(A) 与 B 是独立的。
贝叶斯公式:
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B)=\frac{P(B|A)P(A)}{P(B)} P(A∣B)=P(B)P(B∣A)P(A)
贝叶斯公式的推导也很简单,结合第一部分我们提到的条件概率和联合概率便可求出。
条件概率:
P ( A ∣ B ) = P ( A , B ) P ( B ) P(A|B)=\frac{P(A,B)}{P(B)} P(A∣B)=P(B)P(A,B)
联合概率:
P ( A , B ) = P ( B ∣ A ) P ( A ) {P(A,B)} = P(B|A)P(A) P(A,B)=P(B∣A)P(A)
3. 最大后验概率 MAP
有时,给定数据B,想要求假设空间 A 中的最可能的假设称为最大后验概率 MAP(Maximum a Posteriori)。
A M A P = a r g m a x P ( A ∣ B ) A_{MAP} = argmax P(A|B) AMAP=argmaxP(A∣B)
也就是求:
= a r g m a x P ( B ∣ A ) P ( A ) P ( B ) = argmax \frac{P(B|A)P(A)}{P(B)} =argmaxP(B)P(B∣A)P(A)
去掉 P ( B ) P(B) P(B)是因为其与假设 A 是独立的。
= a r g m a x P ( B ∣ A ) P ( A ) = argmax P(B|A)P(A) =argmaxP(B∣A)P(A)
边栏推荐
猜你喜欢
Hands on deep learning (IV) -- convolutional neural network CNN
[P2P] local packet capturing
Cnopendata list data of Chinese colleges and Universities
[Matlab] Simulink 自定义函数中的矩阵乘法工作不正常时可以使用模块库中的矩阵乘法模块代替
QT learning 26 integrated example of layout management
Thinkcmf6.0 installation tutorial
QT learning 28 toolbar in the main window
Linux server development, redis source code storage principle and data model
Padavan manually installs PHP
@component(““)
随机推荐
解决问题:Unable to connect to Redis
Button wizard script learning - about tmall grabbing red envelopes
C language queue
Linux server development, MySQL cache strategy
【webrtc】m98 screen和window采集
Leanote private cloud note building
Pytest+allure+jenkins environment -- completion of pit filling
Téléchargement des données de conception des puces
自定义类加载器加载网络Class
Live broadcast platform source code, foldable menu bar
芯片资料 网站 易特创芯
Linux server development, SQL statements, indexes, views, stored procedures, triggers
Jenkins remote build project timeout problem
[advanced digital IC Verification] command query method and common command interpretation of VCs tool
Zhilian + AV, AITO asked M7 to do more than ideal one
misc ez_ usb
[quick start of Digital IC Verification] 17. Basic grammar of SystemVerilog learning 4 (randomization)
You Li takes you to talk about C language 6 (common keywords)
Numbers that appear only once
Technology cloud report: from robot to Cobot, human-computer integration is creating an era