当前位置:网站首页>Parameters of convolutional neural network
Parameters of convolutional neural network
2022-07-03 08:49:00 【Thebluewinds】
Parameter writing of convolutional neural network
The error direction propagation master proposed in order to deal with the huge amount of calculation of partial derivatives . But the gradient descent method is still the foundation .
One 、 Parameters required by convolution neural network
Filter example of convolution layer :
Unified offset of convolution layer : b F 1 b^{F1}_{} bF1
Output layer weight : w 1 − 11 O 1 w_{1-11}^{O1} w1−11O1
Output layer offset : b 1 O 1 b_{1}^{O1} b1O1
The basic formula of gradient descent method : ( Δ w 11 F 1 , ⋯ , Δ w 1 − 11 O 1 , ⋯ , Δ b 1 2 , ⋯ ) = − η ( ∂ C T ∂ w 11 F 1 , ⋯ , ∂ C T ∂ w 1 − 11 O 1 , ⋯ , ∂ C T ∂ b F 1 , ⋯ , ∂ C T ∂ b 1 O , ⋯ ) \left( \varDelta w_{11}^{F1},\cdots ,\varDelta w_{1-11}^{O1},\cdots ,\varDelta b_{1}^{2}, \cdots \right) =\,\,-\eta \left( \frac{\partial C_T}{\partial w_{11}^{F1}},\cdots ,\frac{\partial C_T}{\partial w_{1-11}^{O1}},\cdots ,\frac{\partial C_T}{\partial b^{F1}},\cdots ,\frac{\partial C_T}{\partial b_{1}^{O}},\cdots \right) (Δw11F1,⋯,Δw1−11O1,⋯,Δb12,⋯)=−η(∂w11F1∂CT,⋯,∂w1−11O1∂CT,⋯,∂bF1∂CT,⋯,∂b1O∂CT,⋯)
Two 、 Using neural unit error δ j l \delta _{j}^{l} δjl To represent the gradient component of each parameter
1、 Output layer error
∂ C ∂ w k − i j O n = δ i j O a i j P k , ∂ C ∂ b n O = δ n O \frac{\partial C}{\partial w_{k-ij}^{O_n}}=\delta _{ij}^{O}a_{ij}^{Pk}, \frac{\partial C}{\partial b_{n}^{O}}\,\,=\,\,\delta _{n}^{O} ∂wk−ijOn∂C=δijOaijPk,∂bnO∂C=δnO
among n Label the neural unit of the output layer ,k Number the sublayer of the pool layer ,i、j Is the row of the filter 、 Column number . first : Represents the output layer n Number of neurons k Layer pool layer i-j Neural unit error of output neuron weight . the second : The first n Neural unit error of bias of neurons
2、 Error of convolution layer
A、 Convolution layer filter weight
∂ C ∂ w i j F k = δ 11 F k x i j + δ 12 F k x i j + 1 + ⋯ + δ 44 F k x i + 3 j + 3 \frac{\partial C}{\partial w_{ij}^{F_k}}\,\,=\,\,\delta _{11}^{F_k}x_{ij}+\,\,\delta _{12}^{F_k}x_{ij+1}+\cdots +\,\,\delta _{44}^{F_k}x_{i+3j+3} ∂wijFk∂C=δ11Fkxij+δ12Fkxij+1+⋯+δ44Fkxi+3j+3
This is the number of pixels 6x6、 The filter for 3x3 The relation of . In other cases , We need to make corresponding changes according to the actual situation . It means the first one k The first layer of convolution i-j Neural unit error .
B、 Unified offset weight of convolution layer
∂ C ∂ b F k = δ 11 F + δ 12 F k + ⋯ + δ 33 F k + ⋯ + δ 44 F k \frac{\partial C}{\partial b_{}^{F_k}}=\,\,\delta _{11}^{F}+\delta _{12}^{F_k}+\cdots +\delta _{33}^{F_k}+\cdots +\delta _{44}^{F_k} ∂bFk∂C=δ11F+δ12Fk+⋯+δ33Fk+⋯+δ44Fk
There is only one uniform offset for each convolution . It means the first one k The offset of the convolution layer obtained by the layer filter layer .
3、 ... and 、 How to calculate the output layer δ j l \delta _{j}^{l} δjl
The activation function of the output layer is a(z),n Number the neural units of this layer .
KaTeX parse error: Expected group after '^' at position 56: …O}-t_n\text{)}a^̲'\left( z_{n}^{…
Represents the output layer n Neural unit error of neurons .
边栏推荐
- Monotonic stack -84 The largest rectangle in the histogram
- UE4 source code reading_ Mobile synchronization
- C language student management system based on linked list, super detailed
- Solution of 300ms delay of mobile phone
- Notes and bugs generated during the use of h:i:s and y-m-d
- 100 GIS practical application cases (78) - Multi compliance database design and data warehousing
- 22-06-28 西安 redis(02) 持久化机制、入门使用、事务控制、主从复制机制
- Osgearth target selection
- Unity editor expansion - draw lines
- 22-06-28 Xi'an redis (02) persistence mechanism, entry, transaction control, master-slave replication mechanism
猜你喜欢
Cloudcompare learning (1) - cloudcompare compilation and common plug-in implementation
Notes on understanding applets 2022/7/3
[MySQL] MySQL Performance Optimization Practice: introduction of database lock and index search principle
Mortgage Calculator
Chocolate installation
Unity learning notes
Concurrent programming (VI) ABA problems and solutions under CAS
Concurrent programming (III) detailed explanation of synchronized keyword
OpenGL learning notes
Gif remove blank frame frame number adjustment
随机推荐
Mysql容器化(1)Docker安装MySQL
UE4 source code reading_ Mobile synchronization
[concurrent programming] concurrent security
PHP uses foreach to get a value in a two-dimensional associative array (with instances)
OpenGL learning notes
Eating fruit
Thymeleaf 404 reports an error: there was unexpected error (type=not found, status=404)
[concurrent programming] consistency hash
Gif remove blank frame frame number adjustment
[rust note] 10 operator overloading
Dealing with duplicate data in Excel with xlwings
Animation_ IK overview
[set theory] order relation (total order relation | total order set | total order relation example | quasi order relation | quasi order relation theorem | bifurcation | quasi linear order relation | q
cres
Deeply understand the underlying data structure of MySQL index
Explain sizeof, strlen, pointer, array and other combination questions in detail
Mortgage Calculator
Development experience and experience
【Rust 笔记】10-操作符重载
Osgearth topographic shading map drawing