当前位置:网站首页>Parameters of convolutional neural network
Parameters of convolutional neural network
2022-07-03 08:49:00 【Thebluewinds】
Parameter writing of convolutional neural network
The error direction propagation master proposed in order to deal with the huge amount of calculation of partial derivatives . But the gradient descent method is still the foundation .
One 、 Parameters required by convolution neural network
Filter example of convolution layer :
Unified offset of convolution layer : b F 1 b^{F1}_{} bF1
Output layer weight : w 1 − 11 O 1 w_{1-11}^{O1} w1−11O1
Output layer offset : b 1 O 1 b_{1}^{O1} b1O1
The basic formula of gradient descent method : ( Δ w 11 F 1 , ⋯ , Δ w 1 − 11 O 1 , ⋯ , Δ b 1 2 , ⋯ ) = − η ( ∂ C T ∂ w 11 F 1 , ⋯ , ∂ C T ∂ w 1 − 11 O 1 , ⋯ , ∂ C T ∂ b F 1 , ⋯ , ∂ C T ∂ b 1 O , ⋯ ) \left( \varDelta w_{11}^{F1},\cdots ,\varDelta w_{1-11}^{O1},\cdots ,\varDelta b_{1}^{2}, \cdots \right) =\,\,-\eta \left( \frac{\partial C_T}{\partial w_{11}^{F1}},\cdots ,\frac{\partial C_T}{\partial w_{1-11}^{O1}},\cdots ,\frac{\partial C_T}{\partial b^{F1}},\cdots ,\frac{\partial C_T}{\partial b_{1}^{O}},\cdots \right) (Δw11F1,⋯,Δw1−11O1,⋯,Δb12,⋯)=−η(∂w11F1∂CT,⋯,∂w1−11O1∂CT,⋯,∂bF1∂CT,⋯,∂b1O∂CT,⋯)
Two 、 Using neural unit error δ j l \delta _{j}^{l} δjl To represent the gradient component of each parameter
1、 Output layer error
∂ C ∂ w k − i j O n = δ i j O a i j P k , ∂ C ∂ b n O = δ n O \frac{\partial C}{\partial w_{k-ij}^{O_n}}=\delta _{ij}^{O}a_{ij}^{Pk}, \frac{\partial C}{\partial b_{n}^{O}}\,\,=\,\,\delta _{n}^{O} ∂wk−ijOn∂C=δijOaijPk,∂bnO∂C=δnO
among n Label the neural unit of the output layer ,k Number the sublayer of the pool layer ,i、j Is the row of the filter 、 Column number . first : Represents the output layer n Number of neurons k Layer pool layer i-j Neural unit error of output neuron weight . the second : The first n Neural unit error of bias of neurons
2、 Error of convolution layer
A、 Convolution layer filter weight
∂ C ∂ w i j F k = δ 11 F k x i j + δ 12 F k x i j + 1 + ⋯ + δ 44 F k x i + 3 j + 3 \frac{\partial C}{\partial w_{ij}^{F_k}}\,\,=\,\,\delta _{11}^{F_k}x_{ij}+\,\,\delta _{12}^{F_k}x_{ij+1}+\cdots +\,\,\delta _{44}^{F_k}x_{i+3j+3} ∂wijFk∂C=δ11Fkxij+δ12Fkxij+1+⋯+δ44Fkxi+3j+3
This is the number of pixels 6x6、 The filter for 3x3 The relation of . In other cases , We need to make corresponding changes according to the actual situation . It means the first one k The first layer of convolution i-j Neural unit error .
B、 Unified offset weight of convolution layer
∂ C ∂ b F k = δ 11 F + δ 12 F k + ⋯ + δ 33 F k + ⋯ + δ 44 F k \frac{\partial C}{\partial b_{}^{F_k}}=\,\,\delta _{11}^{F}+\delta _{12}^{F_k}+\cdots +\delta _{33}^{F_k}+\cdots +\delta _{44}^{F_k} ∂bFk∂C=δ11F+δ12Fk+⋯+δ33Fk+⋯+δ44Fk
There is only one uniform offset for each convolution . It means the first one k The offset of the convolution layer obtained by the layer filter layer .
3、 ... and 、 How to calculate the output layer δ j l \delta _{j}^{l} δjl
The activation function of the output layer is a(z),n Number the neural units of this layer .
KaTeX parse error: Expected group after '^' at position 56: …O}-t_n\text{)}a^̲'\left( z_{n}^{…
Represents the output layer n Neural unit error of neurons .
边栏推荐
- VIM learning notes from introduction to silk skating
- Monotonic stack -84 The largest rectangle in the histogram
- Talking about: is the HashSet set ordered or disordered /hashset set unique, why can we store elements with the same content
- Campus lost and found platform based on SSM, source code, database script, project import and operation video tutorial, Thesis Writing Tutorial
- [rust notes] 02 ownership
- Unity learning notes
- Unity editor expansion - the design idea of imgui
- Mortgage Calculator
- Unity Editor Extension - event handling
- 【Rust 笔记】12-闭包
猜你喜欢

Introduction to Base64 coding

Final review of Database Principles

Dom4j遍历和更新XML

Really explain the five data structures of redis

Concurrent programming (VI) ABA problems and solutions under CAS

Unity editor expansion - scrolling list
![[rust notes] 02 ownership](/img/f7/74f8ea3bd697957f9ebfa3e1513fda.png)
[rust notes] 02 ownership

Advanced OSG collision detection

JS ternary operator - learning notes (with cases)
![[concurrent programming] explicit lock and AQS](/img/5f/a80751a68726f53d11133810f454a3.jpg)
[concurrent programming] explicit lock and AQS
随机推荐
【Rust笔记】06-包和模块
Unity multi open script
OpenGL learning notes
The method for win10 system to enter the control panel is as follows:
Redis cluster series 4
[rust notes] 13 iterator (Part 1)
Allocation exception Servlet
Monotonic stack -84 The largest rectangle in the histogram
UE4 source code reading_ Bone model and animation system_ Animation compression
Vscode, idea, VIM development tool shortcut keys
796 · unlock
22-06-28 西安 redis(02) 持久化机制、入门使用、事务控制、主从复制机制
Concurrent programming (V) detailed explanation of atomic and unsafe magic classes
[concurrent programming] thread foundation and sharing between threads
【Rust 笔记】13-迭代器(上)
Notes on understanding applets 2022/7/3
Development experience and experience
On the difference and connection between find and select in TP5 framework
Analysis of Alibaba canal principle
Animation_ IK overview