当前位置:网站首页>ETL data cleaning case in MapReduce

ETL data cleaning case in MapReduce

2022-08-03 10:49:00 QYHuiiQ

在实际业务场景中,When we process the data, we will first clean the data,For example, filter out some invalid data;Just need to clean the datamap阶段即可,不需要reduce阶段.

In this case, what we want to achieve is that only the department number is left in the employee table datad01的数据.

  • 数据准备
001,Tina,d03
002,Sherry,d01
003,Bob,d01
004,Sam,d02
005,Mohan,d01
006,Tom,d03

新建project:

  • 引入pom依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>wyh.test</groupId>
    <artifactId>TestETL</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>

    <packaging>jar</packaging>
    <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.1.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.1.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>3.1.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>3.1.3</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>RELEASE</version>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.4.3</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <minimizeJar>true</minimizeJar>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>
  • 自定义Mapper
package wyh.test;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class ETLMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {
        String[] split = value.toString().split(",");
        if("d01".equals(split[2])){
            //部门编号为d01,留下
            context.write(value, NullWritable.get());
        }else{
            return;
        }
    }
}
  • 自定义主类
package wyh.test;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.net.URI;

public class ETLJobMain extends Configured implements Tool {
    @Override
    public int run(String[] strings) throws Exception {
        Job job = Job.getInstance(super.getConf(), "testETLJob");
        //!!!!!!!!!!    集群必须要设置    !!!!!!!!
        job.setJarByClass(ETLJobMain.class);
        //配置job具体要执行的任务步骤
        //指定要读取的文件的路径,这里写了目录,就会将该目录下的所有文件都读取到(这里只需要放employee.txt即可)
        FileInputFormat.setInputPaths(job, new Path("D:\\test_hdfs"));
        //指定map处理逻辑类
        job.setMapperClass(ETLMapper.class);
        //指定map阶段输出的k2类型
        job.setMapOutputKeyClass(Text.class);
        //指定map阶段输出的v2类型
        job.setMapOutputValueClass(NullWritable.class);
        //由于map端已经把预期的输出结果处理好了,不需要reduce端再处理,所以这里设置reduceTask个数为0
        job.setNumReduceTasks(0);
        //指定结果输出路径,该目录必须是不存在的目录(如已存在该目录,则会报错),它会自动帮我们创建
        FileOutputFormat.setOutputPath(job, new Path("D:\\testETLouput"));
        //返回执行状态
        boolean status = job.waitForCompletion(true);
        //使用三目运算,将布尔类型的返回值转换为整型返回值,其实这个地方的整型返回值就是返回给了下面main()中的runStatus
        return status ? 0:1;
    }

    public static void main(String[] args) throws Exception {
        Configuration configuration = new Configuration();
        /**
         * 参数一是一个Configuration对象,参数二是Tool的实现类对象,参数三是一个String类型的数组参数,可以直接使用main()中的参数args.
         * 返回值是一个整型的值,这个值代表了当前这个任务执行的状态.
         * 调用ToolRunner的run方法启动job任务.
         */
        int runStatus = ToolRunner.run(configuration, new ETLJobMain(), args);
        /**
         * 任务执行完成后退出,根据上面状态值进行退出,如果任务执行是成功的,那么就是成功退出,如果任务是失败的,就是失败退出
         */
        System.exit(runStatus);

    }

}
  • 运行程序并查看结果

 You can see that only the department isd01data remains,符合预期结果.

这样就简单地实现了ETLZhongdi data cleaning process.

原网站

版权声明
本文为[QYHuiiQ]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/215/202208031045028780.html