当前位置:网站首页>Detailed demonstration pytorch framework implementations old photo repair (GPU)
Detailed demonstration pytorch framework implementations old photo repair (GPU)
2022-08-03 19:41:00 【AI Algorithm Alliance】
I. Environmental description
| Environment | Version |
| System | windows10 |
| graphics card | RTX3060 |
| CUDA | 11.1.1 |
| cuDNN | 8.1.1 |
| Python | 3.8.8 |
| torch | 1.9.0+cu111 |
| torchvision | 0.10.0+cu111 |
| torchaudio | 0.9.0 |
cuda installation reference: tensorflow-gpu2.4.1 detailed steps of installation and configuration
Algorithm model download address: link: https://pan.baidu.com/s/1uGNXd5g2dKjb4zgckxiLdA
Extraction code: vqv6
Second, install dependent modules
1.Create a new virtual environment.
2. Install torch, torchvision, torchaudio modules.
pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio===0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
3. Install dependent libraries.
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple4. Store the photos to be repaired in the ./Bringing-Old-Photos-Back-to-Life/input folder
and execute the following command:
python run.py --input_folder C:\Users\Administrator\Desktop\Bringing-Old-Photos-Back-to-Life\input --output_folder C:\Users\Administrator\Desktop\Bringing-Old-Photos-Back-to-Life\output --GPU 0Execution result: 
Generate repaired photo path:

Effect comparison:


边栏推荐
猜你喜欢
随机推荐
node版本切换工具NVM以及npm源管理器nrm
按需视觉识别:愿景和初步方案
glide set gif start stop
tensorflow-gpu2.4.1安装配置详细步骤
Handler 源码解析
开源生态研究与实践| ChinaOSC
开发即时通讯到底需要什么样的技术,需要多久的时间
Postgresql source code (64) Query execution - data structure and execution process before submodule Executor (2) execution
系统太多,多账号互通如何实现?
【夜莺监控方案】08-监控msyql集群(prometheuse+n9e+mysqld_exporter)
Force is brushed buckle problem for the sum of two Numbers
Postgresql源码(65)新快照体系Globalvis工作原理分析
单调栈及其应用
Internet Download Manager简介及下载安装包,IDM序列号注册问题解决方法
if/else或switch替换为Enum
Shell编程之循环语句
安装radondb mysql遇到问题
阿里巴巴政委体系-第六章、阿里政委体系运作
Solution for no navigation bar after Word is saved as PDF
Jingdong cloud released a new generation of distributed database StarDB 5.0











