当前位置:网站首页>[set theory] relationship properties (common relationship properties | relationship properties examples | relationship operation properties)
[set theory] relationship properties (common relationship properties | relationship properties examples | relationship operation properties)
2022-07-03 04:57:00 【Programmer community】
List of articles
- One 、 The nature of common relationships
- Two 、 Examples of the nature of relationships
- 3、 ... and 、 Relation operation properties
One 、 The nature of common relationships
stay Set of natural numbers
N
=
{
0
,
1
,
2
,
⋯
}
N=\{ 0, 1,2, \cdots \}
N={ 0,1,2,⋯} On , The nature of the following relationship :
1. Less than or equal to :
Less than or equal to :
Symbolic description :
≤
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
∧
x
≤
y
}
\leq = \{ <x, y> | x \in N \land y \in N \land x \leq y \}
≤={ <x,y>∣x∈N∧y∈N∧x≤y}
The nature of the relationship : introspect , antisymmetric , Pass on
2. Relationship greater than or equal to :
Relationship greater than or equal to :
Symbolic description :
≥
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
∧
x
≥
y
}
\geq = \{ <x, y> | x \in N \land y \in N \land x \geq y \}
≥={ <x,y>∣x∈N∧y∈N∧x≥y}
The nature of the relationship : introspect , antisymmetric , Pass on
3. Less than relationship :
Less than relationship :
Symbolic description :
<
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
∧
x
<
y
}
< = \{ <x, y> | x \in N \land y \in N \land x < y \}
<={ <x,y>∣x∈N∧y∈N∧x<y}
The nature of the relationship : Reflexion , antisymmetric , Pass on
4. Greater than the relationship :
Greater than the relationship :
Symbolic description :
>
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
∧
x
>
y
}
> = \{ <x, y> | x \in N \land y \in N \land x > y \}
>={ <x,y>∣x∈N∧y∈N∧x>y}
The nature of the relationship : Reflexion , antisymmetric , Pass on
5. Division relations :
Division relations :
Symbolic description :
∣
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
∧
x
∣
y
}
| = \{ <x, y> | x \in N \land y \in N \land x | y \}
∣={ <x,y>∣x∈N∧y∈N∧x∣y}
The nature of the relationship : antisymmetric , Pass on
x
∣
y
x|y
x∣y Medium
∣
|
∣ The symbol means division ,
x
x
x to be divisible by
y
y
y ;
x
x
x to be divisible by
y
y
y ,
x
x
x It's a divisor ( molecular ) ,
y
y
y It's a dividend ( The denominator ) ;
y
x
\dfrac{y}{x}
xy
y
y
y Can be
x
x
x to be divisible by ,
x
x
x It's a divisor ( molecular ) ,
y
y
y It's a dividend ( The denominator ) ;
y
x
\dfrac{y}{x}
xy
In the divisible relationship , Be sure to pay attention to , Only non
0
0
0 to be divisible by
0
0
0 ,
0
0
0 Cannot divide non
0
0
0 , namely
0
0
0 Can only be divisor , Cannot divide ;
Reference resources : 【 Set theory 】 Binary relationship ( Special relationship types | Empty relation | Identity | Global relations | Division relations | Size relationship ) 3、 ... and 、 Division relations
6. Identity :
Identity :
Symbolic description :
I
N
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
∧
x
=
y
}
I_N = \{ <x, y> | x \in N \land y \in N \land x = y \}
IN={ <x,y>∣x∈N∧y∈N∧x=y}
The nature of the relationship : introspect , symmetry , antisymmetric , Pass on
7. Global relations :
Global relations :
Symbolic description :
E
N
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
}
=
N
×
N
E_N = \{ <x, y> | x \in N \land y \in N \} = N \times N
EN={ <x,y>∣x∈N∧y∈N}=N×N
The nature of the relationship : introspect , symmetry , Pass on
introspect , Antisymmetric relation , It is called partial order relation ;
Two 、 Examples of the nature of relationships
Relationship diagram relationship determination :
- ① introspect : All vertices in the graph They all have rings ;
- ② Reflexion : All vertices in the graph There is no ring ;
- ③ symmetry : Between two vertices Yes
0
0
0 Or
2
2
2 A directed edge ;
- ④ antisymmetric : Between two vertices Yes
0
0
0 Or
1
1
1 A directed edge ;
- ⑤ Pass on : Premise
a
→
b
,
b
→
c
a \to b , b\to c
a→b,b→c Don't set up Default delivery , Premise
a
→
b
,
b
→
c
a \to b , b\to c
a→b,b→c establish Must satisfy
a
→
c
a \to c
a→c There is ;
1.
R
1
=
{
<
a
,
a
>
,
<
a
,
b
>
,
<
b
,
c
>
,
<
a
,
c
>
}
R_1 = \{ <a, a> , <a, b> , <b , c> , <a,c> \}
R1={ <a,a>,<a,b>,<b,c>,<a,c>} :
Draw a diagram of the above relationship : antisymmetric , Pass on 
introspect / Reflexion : Some vertices have rings , Some vertices have no rings , Neither reflexivity nor reflexivity is tenable ;
symmetry / antisymmetric : Between the vertices are
1
1
1 The strip has a directed edge , There is only
0
/
1
0/1
0/1 side , yes antisymmetric Of ;
Pass on :
a
→
b
,
b
→
c
a\to b, b \to c
a→b,b→c establish ,
a
→
c
a \to c
a→c There is , Transitivity establish ;
2.
R
2
=
{
<
a
,
a
>
,
<
a
,
b
>
,
<
b
,
c
>
,
<
c
,
a
>
}
R_2 = \{ <a, a> , <a, b> , <b , c> , <c,a> \}
R2={ <a,a>,<a,b>,<b,c>,<c,a>} :
Draw a diagram of the above relationship : antisymmetric

introspect / Reflexion : Some vertices have rings , Some vertices have no rings , Neither reflexivity nor reflexivity is tenable ;
symmetry / antisymmetric : Between the vertices are
1
1
1 The strip has a directed edge , There is only
0
/
1
0/1
0/1 side , yes antisymmetric Of ;
Pass on :
a
→
b
,
b
→
c
a\to b, b \to c
a→b,b→c establish ,
a
→
c
a \to c
a→c non-existent , Transitivity Don't set up ;
3.
R
3
=
{
<
a
,
a
>
,
<
b
,
b
>
,
<
a
,
b
>
,
<
b
,
a
>
,
<
c
,
c
>
}
R_3 = \{ <a, a> , <b, b> , <a,b> , <b,a> , <c,c> \}
R3={ <a,a>,<b,b>,<a,b>,<b,a>,<c,c>} :
Draw a diagram of the above relationship : introspect , symmetry , Pass on

introspect / Reflexion : All vertices have rings , reflexivity establish ;
symmetry / antisymmetric : Between the vertices are
0
0
0 or
2
2
2 The strip has a directed edge , There is only
0
/
2
0/2
0/2 side , yes symmetry Of ;
Pass on : Transitivity establish ;
- Premise
a
→
b
,
b
→
a
a \to b , b\to a
a→b,b→a , Correspondence exists
a
→
a
a \to a
a→a
- Premise
b
→
a
,
a
→
b
b \to a , a\to b
b→a,a→b , Correspondence exists
b
→
b
b \to b
b→b
4.
R
4
=
{
<
a
,
a
>
,
<
a
,
b
>
,
<
b
,
a
>
,
<
c
,
c
>
}
R_4 = \{ <a, a> , <a,b> , <b,a> , <c,c> \}
R4={ <a,a>,<a,b>,<b,a>,<c,c>} :
Draw a diagram of the above relationship : symmetry

introspect / Reflexion : Some vertices have rings , Some vertices have no rings , Neither reflexivity nor reflexivity is tenable ;
symmetry / antisymmetric : Between the vertices are
0
0
0 or
2
2
2 The strip has a directed edge , There is only
0
/
2
0/2
0/2 side , yes symmetry Of ;
Pass on : Transitivity Don't set up ;
- Premise
a
→
b
,
b
→
a
a \to b , b\to a
a→b,b→a , Correspondence exists
a
→
a
a \to a
a→a
- Premise
b
→
a
,
a
→
b
b \to a , a\to b
b→a,a→b , There is no corresponding
b
→
b
b \to b
b→b , Here transitivity does not hold ;
5.
R
5
=
{
<
a
,
a
>
,
<
a
,
b
>
,
<
b
,
b
>
,
<
c
,
c
>
}
R_5 = \{ <a, a> , <a,b> , <b,b> , <c,c> \}
R5={ <a,a>,<a,b>,<b,b>,<c,c>} :
Draw a diagram of the above relationship : introspect , antisymmetric , Pass on

introspect / Reflexion : All vertices have rings , reflexivity establish ;
symmetry / antisymmetric : Between the vertices are
0
0
0 or
1
1
1 The strip has a directed edge , There is only
0
/
1
0/1
0/1 side , yes antisymmetric Of ;
Pass on : The premise doesn't hold , Transitivity establish ;
6.
R
6
=
{
<
a
,
a
>
,
<
b
,
a
>
,
<
b
,
c
>
,
<
a
,
a
>
}
R_6 = \{ <a, a> , <b,a> , <b,c> , <a,a> \}
R6={ <a,a>,<b,a>,<b,c>,<a,a>} :
Draw a diagram of the above relationship : It doesn't matter

introspect / Reflexion : Some vertices have rings , Some vertices have no rings , Neither reflexivity nor reflexivity is tenable ;
symmetry / antisymmetric : Between the vertices are
1
1
1 or
2
2
2 The strip has a directed edge , There is only
0
/
1
0/1
0/1 The edge is antisymmetric , There is only
0
/
2
0/2
0/2 The edges are symmetrical , The above symmetry / The objection is not tenable ;
Pass on : Premise
a
→
b
,
b
→
c
a \to b , b \to c
a→b,b→c , There is no corresponding
a
→
c
a \to c
a→c , Here transitivity does not hold ;
3、 ... and 、 Relation operation properties
discuss a problem : Specify the nature of the relationship Between them , The nature of the result ; Such as Two relations of reflexivity Perform the reverse order synthesis operation , The result is reflexive ;
The meaning of the table in the following figure is : Such as Second column “ introspect ” And The third column “
R
1
∪
R
2
R_1 \cup R_2
R1∪R2” , Cross table position , representative Relationship
R
1
R_1
R1 And relationships
R
2
R_2
R2 It's reflexive , Whether the intersection of its ordered pairs is reflexive , If it is
1
1
1 , The explanation is reflexive , If there is no value , The explanation is not reflexive ;
| introspect | Reflexion | symmetry | antisymmetric | Pass on | |
|---|---|---|---|---|---|
R 1 − 1 , R 2 − 1 R_1^{-1}, R_2^{-1} R1−1,R2−1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 |
R 1 ∪ R 2 − 1 R_1 \cup R_2^{-1} R1∪R2−1 | 1 1 1 | 1 1 1 | 1 1 1 | ||
R 1 ∩ R 2 R_1 \cap R_2 R1∩R2 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 |
R 1 ∘ R 2 , R 2 ∘ R 1 R_1 \circ R_2 , R_2 \circ R_1 R1∘R2,R2∘R1 | 1 1 1 | ||||
R 1 − R 2 , R 2 − R 1 R_1 - R_2 , R_2 - R_1 R1−R2,R2−R1 | 1 1 1 | 1 1 1 | 1 1 1 | ||
∼ R 1 , ∼ R 2 \sim R_1, \sim R_2 ∼R1,∼R2 | 1 1 1 |
边栏推荐
- String matching: find a substring in a string
- document. The problem of missing parameters of referer is solved
- Handling record of electric skateboard detained by traffic police
- RT thread flow notes I startup, schedule, thread
- [develop wechat applet local storage with uni app]
- 1114 family property (25 points)
- [SQL injection] joint query (the simplest injection method)
- Market status and development prospect prediction of global neutral silicone sealant industry in 2022
- Network security textual research recommendation
- Why does I start with =1? How does this code work?
猜你喜欢

Thesis reading_ Tsinghua Ernie
![[research materials] annual report of China's pension market in 2021 - Download attached](/img/24/622aeeb38de16ac84128b362ceeddb.jpg)
[research materials] annual report of China's pension market in 2021 - Download attached

LVS load balancing cluster of efficient multi-purpose cluster (NAT mode)

Truncated sentences of leetcode simple questions

Flutter monitors volume to realize waveform visualization of audio

【工具跑SQL盲注】

Interface frequency limit access

Unity tool Luban learning notes 1

逆袭大学生的职业规划

Oracle SQL table data loss
随机推荐
Number of uniform strings of leetcode simple problem
Interface frequency limit access
Leetcode simple question: check whether two string arrays are equal
Flutter monitors volume to realize waveform visualization of audio
Market status and development prospect prediction of the global fire alarm sensor industry in 2022
Handling record of electric skateboard detained by traffic police
[Yu Yue education] basic reference materials of interchangeability and measurement technology of Zhongyuan Institute of Technology
Oracle SQL table data loss
[research materials] the fourth quarter report of the survey of Chinese small and micro entrepreneurs in 2021 - Download attached
Leetcode simple question: check whether the string is an array prefix
5-36v input automatic voltage rise and fall PD fast charging scheme drawing 30W low-cost chip
Online VR model display - 3D visual display solution
Shuttle + alluxio accelerated memory shuffle take-off
Concurrent operation memory interaction
【SQL注入点】注入点出现位置、判断
Market status and development prospects of the global IOT active infrared sensor industry in 2022
Basic use of Metasploit penetration testing framework
Market status and development prospects of the global automatic tea picker industry in 2022
Small sample target detection network with attention RPN and multi relationship detector (provide source code, data and download)
MySQL winter vacation self-study 2022 12 (3)