当前位置:网站首页>[set theory] relationship properties (common relationship properties | relationship properties examples | relationship operation properties)
[set theory] relationship properties (common relationship properties | relationship properties examples | relationship operation properties)
2022-07-03 04:57:00 【Programmer community】
List of articles
- One 、 The nature of common relationships
- Two 、 Examples of the nature of relationships
- 3、 ... and 、 Relation operation properties
One 、 The nature of common relationships
stay Set of natural numbers
N
=
{
0
,
1
,
2
,
⋯
}
N=\{ 0, 1,2, \cdots \}
N={ 0,1,2,⋯} On , The nature of the following relationship :
1. Less than or equal to :
Less than or equal to :
Symbolic description :
≤
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
∧
x
≤
y
}
\leq = \{ <x, y> | x \in N \land y \in N \land x \leq y \}
≤={ <x,y>∣x∈N∧y∈N∧x≤y}
The nature of the relationship : introspect , antisymmetric , Pass on
2. Relationship greater than or equal to :
Relationship greater than or equal to :
Symbolic description :
≥
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
∧
x
≥
y
}
\geq = \{ <x, y> | x \in N \land y \in N \land x \geq y \}
≥={ <x,y>∣x∈N∧y∈N∧x≥y}
The nature of the relationship : introspect , antisymmetric , Pass on
3. Less than relationship :
Less than relationship :
Symbolic description :
<
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
∧
x
<
y
}
< = \{ <x, y> | x \in N \land y \in N \land x < y \}
<={ <x,y>∣x∈N∧y∈N∧x<y}
The nature of the relationship : Reflexion , antisymmetric , Pass on
4. Greater than the relationship :
Greater than the relationship :
Symbolic description :
>
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
∧
x
>
y
}
> = \{ <x, y> | x \in N \land y \in N \land x > y \}
>={ <x,y>∣x∈N∧y∈N∧x>y}
The nature of the relationship : Reflexion , antisymmetric , Pass on
5. Division relations :
Division relations :
Symbolic description :
∣
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
∧
x
∣
y
}
| = \{ <x, y> | x \in N \land y \in N \land x | y \}
∣={ <x,y>∣x∈N∧y∈N∧x∣y}
The nature of the relationship : antisymmetric , Pass on
x
∣
y
x|y
x∣y Medium
∣
|
∣ The symbol means division ,
x
x
x to be divisible by
y
y
y ;
x
x
x to be divisible by
y
y
y ,
x
x
x It's a divisor ( molecular ) ,
y
y
y It's a dividend ( The denominator ) ;
y
x
\dfrac{y}{x}
xy
y
y
y Can be
x
x
x to be divisible by ,
x
x
x It's a divisor ( molecular ) ,
y
y
y It's a dividend ( The denominator ) ;
y
x
\dfrac{y}{x}
xy
In the divisible relationship , Be sure to pay attention to , Only non
0
0
0 to be divisible by
0
0
0 ,
0
0
0 Cannot divide non
0
0
0 , namely
0
0
0 Can only be divisor , Cannot divide ;
Reference resources : 【 Set theory 】 Binary relationship ( Special relationship types | Empty relation | Identity | Global relations | Division relations | Size relationship ) 3、 ... and 、 Division relations
6. Identity :
Identity :
Symbolic description :
I
N
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
∧
x
=
y
}
I_N = \{ <x, y> | x \in N \land y \in N \land x = y \}
IN={ <x,y>∣x∈N∧y∈N∧x=y}
The nature of the relationship : introspect , symmetry , antisymmetric , Pass on
7. Global relations :
Global relations :
Symbolic description :
E
N
=
{
<
x
,
y
>
∣
x
∈
N
∧
y
∈
N
}
=
N
×
N
E_N = \{ <x, y> | x \in N \land y \in N \} = N \times N
EN={ <x,y>∣x∈N∧y∈N}=N×N
The nature of the relationship : introspect , symmetry , Pass on
introspect , Antisymmetric relation , It is called partial order relation ;
Two 、 Examples of the nature of relationships
Relationship diagram relationship determination :
- ① introspect : All vertices in the graph They all have rings ;
- ② Reflexion : All vertices in the graph There is no ring ;
- ③ symmetry : Between two vertices Yes
0
0
0 Or
2
2
2 A directed edge ;
- ④ antisymmetric : Between two vertices Yes
0
0
0 Or
1
1
1 A directed edge ;
- ⑤ Pass on : Premise
a
→
b
,
b
→
c
a \to b , b\to c
a→b,b→c Don't set up Default delivery , Premise
a
→
b
,
b
→
c
a \to b , b\to c
a→b,b→c establish Must satisfy
a
→
c
a \to c
a→c There is ;
1.
R
1
=
{
<
a
,
a
>
,
<
a
,
b
>
,
<
b
,
c
>
,
<
a
,
c
>
}
R_1 = \{ <a, a> , <a, b> , <b , c> , <a,c> \}
R1={ <a,a>,<a,b>,<b,c>,<a,c>} :
Draw a diagram of the above relationship : antisymmetric , Pass on 
introspect / Reflexion : Some vertices have rings , Some vertices have no rings , Neither reflexivity nor reflexivity is tenable ;
symmetry / antisymmetric : Between the vertices are
1
1
1 The strip has a directed edge , There is only
0
/
1
0/1
0/1 side , yes antisymmetric Of ;
Pass on :
a
→
b
,
b
→
c
a\to b, b \to c
a→b,b→c establish ,
a
→
c
a \to c
a→c There is , Transitivity establish ;
2.
R
2
=
{
<
a
,
a
>
,
<
a
,
b
>
,
<
b
,
c
>
,
<
c
,
a
>
}
R_2 = \{ <a, a> , <a, b> , <b , c> , <c,a> \}
R2={ <a,a>,<a,b>,<b,c>,<c,a>} :
Draw a diagram of the above relationship : antisymmetric

introspect / Reflexion : Some vertices have rings , Some vertices have no rings , Neither reflexivity nor reflexivity is tenable ;
symmetry / antisymmetric : Between the vertices are
1
1
1 The strip has a directed edge , There is only
0
/
1
0/1
0/1 side , yes antisymmetric Of ;
Pass on :
a
→
b
,
b
→
c
a\to b, b \to c
a→b,b→c establish ,
a
→
c
a \to c
a→c non-existent , Transitivity Don't set up ;
3.
R
3
=
{
<
a
,
a
>
,
<
b
,
b
>
,
<
a
,
b
>
,
<
b
,
a
>
,
<
c
,
c
>
}
R_3 = \{ <a, a> , <b, b> , <a,b> , <b,a> , <c,c> \}
R3={ <a,a>,<b,b>,<a,b>,<b,a>,<c,c>} :
Draw a diagram of the above relationship : introspect , symmetry , Pass on

introspect / Reflexion : All vertices have rings , reflexivity establish ;
symmetry / antisymmetric : Between the vertices are
0
0
0 or
2
2
2 The strip has a directed edge , There is only
0
/
2
0/2
0/2 side , yes symmetry Of ;
Pass on : Transitivity establish ;
- Premise
a
→
b
,
b
→
a
a \to b , b\to a
a→b,b→a , Correspondence exists
a
→
a
a \to a
a→a
- Premise
b
→
a
,
a
→
b
b \to a , a\to b
b→a,a→b , Correspondence exists
b
→
b
b \to b
b→b
4.
R
4
=
{
<
a
,
a
>
,
<
a
,
b
>
,
<
b
,
a
>
,
<
c
,
c
>
}
R_4 = \{ <a, a> , <a,b> , <b,a> , <c,c> \}
R4={ <a,a>,<a,b>,<b,a>,<c,c>} :
Draw a diagram of the above relationship : symmetry

introspect / Reflexion : Some vertices have rings , Some vertices have no rings , Neither reflexivity nor reflexivity is tenable ;
symmetry / antisymmetric : Between the vertices are
0
0
0 or
2
2
2 The strip has a directed edge , There is only
0
/
2
0/2
0/2 side , yes symmetry Of ;
Pass on : Transitivity Don't set up ;
- Premise
a
→
b
,
b
→
a
a \to b , b\to a
a→b,b→a , Correspondence exists
a
→
a
a \to a
a→a
- Premise
b
→
a
,
a
→
b
b \to a , a\to b
b→a,a→b , There is no corresponding
b
→
b
b \to b
b→b , Here transitivity does not hold ;
5.
R
5
=
{
<
a
,
a
>
,
<
a
,
b
>
,
<
b
,
b
>
,
<
c
,
c
>
}
R_5 = \{ <a, a> , <a,b> , <b,b> , <c,c> \}
R5={ <a,a>,<a,b>,<b,b>,<c,c>} :
Draw a diagram of the above relationship : introspect , antisymmetric , Pass on

introspect / Reflexion : All vertices have rings , reflexivity establish ;
symmetry / antisymmetric : Between the vertices are
0
0
0 or
1
1
1 The strip has a directed edge , There is only
0
/
1
0/1
0/1 side , yes antisymmetric Of ;
Pass on : The premise doesn't hold , Transitivity establish ;
6.
R
6
=
{
<
a
,
a
>
,
<
b
,
a
>
,
<
b
,
c
>
,
<
a
,
a
>
}
R_6 = \{ <a, a> , <b,a> , <b,c> , <a,a> \}
R6={ <a,a>,<b,a>,<b,c>,<a,a>} :
Draw a diagram of the above relationship : It doesn't matter

introspect / Reflexion : Some vertices have rings , Some vertices have no rings , Neither reflexivity nor reflexivity is tenable ;
symmetry / antisymmetric : Between the vertices are
1
1
1 or
2
2
2 The strip has a directed edge , There is only
0
/
1
0/1
0/1 The edge is antisymmetric , There is only
0
/
2
0/2
0/2 The edges are symmetrical , The above symmetry / The objection is not tenable ;
Pass on : Premise
a
→
b
,
b
→
c
a \to b , b \to c
a→b,b→c , There is no corresponding
a
→
c
a \to c
a→c , Here transitivity does not hold ;
3、 ... and 、 Relation operation properties
discuss a problem : Specify the nature of the relationship Between them , The nature of the result ; Such as Two relations of reflexivity Perform the reverse order synthesis operation , The result is reflexive ;
The meaning of the table in the following figure is : Such as Second column “ introspect ” And The third column “
R
1
∪
R
2
R_1 \cup R_2
R1∪R2” , Cross table position , representative Relationship
R
1
R_1
R1 And relationships
R
2
R_2
R2 It's reflexive , Whether the intersection of its ordered pairs is reflexive , If it is
1
1
1 , The explanation is reflexive , If there is no value , The explanation is not reflexive ;
| introspect | Reflexion | symmetry | antisymmetric | Pass on | |
|---|---|---|---|---|---|
R 1 − 1 , R 2 − 1 R_1^{-1}, R_2^{-1} R1−1,R2−1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 |
R 1 ∪ R 2 − 1 R_1 \cup R_2^{-1} R1∪R2−1 | 1 1 1 | 1 1 1 | 1 1 1 | ||
R 1 ∩ R 2 R_1 \cap R_2 R1∩R2 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 |
R 1 ∘ R 2 , R 2 ∘ R 1 R_1 \circ R_2 , R_2 \circ R_1 R1∘R2,R2∘R1 | 1 1 1 | ||||
R 1 − R 2 , R 2 − R 1 R_1 - R_2 , R_2 - R_1 R1−R2,R2−R1 | 1 1 1 | 1 1 1 | 1 1 1 | ||
∼ R 1 , ∼ R 2 \sim R_1, \sim R_2 ∼R1,∼R2 | 1 1 1 |
边栏推荐
- Current market situation and development prospect prediction of global direct energy deposition 3D printer industry in 2022
- Review the old and know the new: Notes on Data Science
- Shell script Basics - basic grammar knowledge
- MC Layer Target
- Market status and development prospect prediction of global SoC Test Platform Industry in 2022
- 论文阅读_ICD编码_MSMN
- 雇佣收银员(差分约束)
- What is UUID
- Notes | numpy-09 Broadcast
- Market status and development prospect prediction of global colorimetric cup cover industry in 2022
猜你喜欢

移动端——uniapp开发记录(公共请求request封装)

Kept hot standby and haproxy

带有注意力RPN和多关系检测器的小样本目标检测网络(提供源码和数据及下载)...
![[research materials] the fourth quarter report of the survey of Chinese small and micro entrepreneurs in 2021 - Download attached](/img/01/052928e7f20ca671cdc4c30ae55258.jpg)
[research materials] the fourth quarter report of the survey of Chinese small and micro entrepreneurs in 2021 - Download attached

ZABBIX monitoring of lamp architecture (3): zabbix+mysql (to be continued)

Uipath practice (08) - selector

Valentine's day limited withdrawal guide: for one in 200 million of you

Basic use of Metasploit penetration testing framework

Flutter monitors volume to realize waveform visualization of audio
![[research materials] annual report of China's pension market in 2021 - Download attached](/img/24/622aeeb38de16ac84128b362ceeddb.jpg)
[research materials] annual report of China's pension market in 2021 - Download attached
随机推荐
1107 social clusters (30 points)
Why does I start with =1? How does this code work?
[SQL injection] joint query (the simplest injection method)
Blog building tool recommendation (text book delivery)
1111 online map (30 points)
I stepped on a foundation pit today
Actual combat 8051 drives 8-bit nixie tube
1103 integer factorization (30 points)
2022-02-12 daily clock in: problem fine brush
Leetcode simple question: check whether the string is an array prefix
论文阅读_中文NLP_ELECTRA
Shell script Basics - basic grammar knowledge
移动端——uniapp开发记录(公共请求request封装)
Unity tool Luban learning notes 1
Market status and development prospect prediction of global fermented plant protein industry in 2022
I've seen a piece of code in the past. I don't know what I'm doing. I can review it when I have time
M1 Pro install redis
Do you know UVs in modeling?
Coordinatorlayout appbarrayout recyclerview item exposure buried point misalignment analysis
Apache MPM model and ab stress test