当前位置:网站首页>R language objects are stored in JSON
R language objects are stored in JSON
2022-06-27 14:03:00 【Analysis of breeding data】
Reference resources
Getting started with JSON and jsonlite
0. Installation package
install.packages("rjson")
- 1.
1. vector
library(rjson)
vector = c(1:10)
vector
toJSON(vector)
- 1.
- 2.
- 3.
- 4.
> ### vector
> vector = c(1:10) # vector
> vector
[1] 1 2 3 4 5 6 7 8 9 10
> vector_j = toJSON(vector)
> vector_j # json In the form of
[1] "[1,2,3,4,5,6,7,8,9,10]"
> fromJSON(vector_j) # Turn into R
[1] 1 2 3 4 5 6 7 8 9 10
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
2. Data frame
### data.frame
data("npk")
npk # R Data frame
npk_j = toJSON(npk)
npk_j # Json Data frame
fromJSON(npk_j) # Turn into R list
as.data.frame(fromJSON(npk_j)) # Change to data frame
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
> ### data.frame
> data("npk")
> npk # R Data frame
block N P K yield
1 1 0 1 1 49.5
2 1 1 1 0 62.8
3 1 0 0 0 46.8
4 1 1 0 1 57.0
5 2 1 0 0 59.8
6 2 1 1 1 58.5
7 2 0 0 1 55.5
8 2 0 1 0 56.0
9 3 0 1 0 62.8
10 3 1 1 1 55.8
11 3 1 0 0 69.5
12 3 0 0 1 55.0
13 4 1 0 0 62.0
14 4 1 1 1 48.8
15 4 0 0 1 45.5
16 4 0 1 0 44.2
17 5 1 1 0 52.0
18 5 0 0 0 51.5
19 5 1 0 1 49.8
20 5 0 1 1 48.8
21 6 1 0 1 57.2
22 6 1 1 0 59.0
23 6 0 1 1 53.2
24 6 0 0 0 56.0
> npk_j = toJSON(npk)
> npk_j # Json Data frame
[1] "{\"block\":[\"1\",\"1\",\"1\",\"1\",\"2\",\"2\",\"2\",\"2\",\"3\",\"3\",\"3\",\"3\",\"4\",\"4\",\"4\",\"4\",\"5\",\"5\",\"5\",\"5\",\"6\",\"6\",\"6\",\"6\"],\"N\":[\"0\",\"1\",\"0\",\"1\",\"1\",\"1\",\"0\",\"0\",\"0\",\"1\",\"1\",\"0\",\"1\",\"1\",\"0\",\"0\",\"1\",\"0\",\"1\",\"0\",\"1\",\"1\",\"0\",\"0\"],\"P\":[\"1\",\"1\",\"0\",\"0\",\"0\",\"1\",\"0\",\"1\",\"1\",\"1\",\"0\",\"0\",\"0\",\"1\",\"0\",\"1\",\"1\",\"0\",\"0\",\"1\",\"0\",\"1\",\"1\",\"0\"],\"K\":[\"1\",\"0\",\"0\",\"1\",\"0\",\"1\",\"1\",\"0\",\"0\",\"1\",\"0\",\"1\",\"0\",\"1\",\"1\",\"0\",\"0\",\"0\",\"1\",\"1\",\"1\",\"0\",\"1\",\"0\"],\"yield\":[49.5,62.8,46.8,57,59.8,58.5,55.5,56,62.8,55.8,69.5,55,62,48.8,45.5,44.2,52,51.5,49.8,48.8,57.2,59,53.2,56]}"
>
> fromJSON(npk_j) # Turn into R list
$`block`
[1] "1" "1" "1" "1" "2" "2" "2" "2" "3" "3" "3" "3" "4" "4" "4" "4" "5"
[18] "5" "5" "5" "6" "6" "6" "6"
$N
[1] "0" "1" "0" "1" "1" "1" "0" "0" "0" "1" "1" "0" "1" "1" "0" "0" "1"
[18] "0" "1" "0" "1" "1" "0" "0"
$P
[1] "1" "1" "0" "0" "0" "1" "0" "1" "1" "1" "0" "0" "0" "1" "0" "1" "1"
[18] "0" "0" "1" "0" "1" "1" "0"
$K
[1] "1" "0" "0" "1" "0" "1" "1" "0" "0" "1" "0" "1" "0" "1" "1" "0" "0"
[18] "0" "1" "1" "1" "0" "1" "0"
$yield
[1] 49.5 62.8 46.8 57.0 59.8 58.5 55.5 56.0 62.8 55.8 69.5 55.0 62.0 48.8
[15] 45.5 44.2 52.0 51.5 49.8 48.8 57.2 59.0 53.2 56.0
> as.data.frame(fromJSON(npk_j)) # Change to data frame
block N P K yield
1 1 0 1 1 49.5
2 1 1 1 0 62.8
3 1 0 0 0 46.8
4 1 1 0 1 57.0
5 2 1 0 0 59.8
6 2 1 1 1 58.5
7 2 0 0 1 55.5
8 2 0 1 0 56.0
9 3 0 1 0 62.8
10 3 1 1 1 55.8
11 3 1 0 0 69.5
12 3 0 0 1 55.0
13 4 1 0 0 62.0
14 4 1 1 1 48.8
15 4 0 0 1 45.5
16 4 0 1 0 44.2
17 5 1 1 0 52.0
18 5 0 0 0 51.5
19 5 1 0 1 49.8
20 5 0 1 1 48.8
21 6 1 0 1 57.2
22 6 1 1 0 59.0
23 6 0 1 1 53.2
24 6 0 0 0 56.0
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
3. matrix
### matrix
mat = matrix(1:9,3,3)
mat
mat_j = toJSON(mat,indent = "0")
mat_j
fromJSON(mat_j)
matrix(fromJSON(mat_j),3,3)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
> ### matrix
> mat = matrix(1:9,3,3)
> mat
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
>
> mat_j = toJSON(mat,indent = "0")
> mat_j
[1] "[1,2,3,4,5,6,7,8,9]"
> fromJSON(mat_j)
[1] 1 2 3 4 5 6 7 8 9
> matrix(fromJSON(mat_j),3,3)
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
4. Analysis of variance
### Analysis of variance
data(npk)
anova = summary(aov(yield~ N*P*K + block, data=npk))
anova
a_j = toJSON(anova)
a_j
as.data.frame(fromJSON(a_j))
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
> ### Analysis of variance
> data(npk)
> anova = summary(aov(yield~ N*P*K + block, data=npk))
> anova
Df Sum Sq Mean Sq F value Pr(>F)
N 1 189.3 189.28 12.259 0.00437 **
P 1 8.4 8.40 0.544 0.47490
K 1 95.2 95.20 6.166 0.02880 *
block 5 343.3 68.66 4.447 0.01594 *
N:P 1 21.3 21.28 1.378 0.26317
N:K 1 33.1 33.14 2.146 0.16865
P:K 1 0.5 0.48 0.031 0.86275
Residuals 12 185.3 15.44
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> a_j = toJSON(anova)
> a_j
[1] "[{\"Df\":[1,1,1,5,1,1,1,12],\"Sum Sq\":[189.281666666667,8.40166666666664,95.2016666666665,343.295,21.2816666666668,33.1350000000001,0.48166666666667,185.286666666667],\"Mean Sq\":[189.281666666667,8.40166666666664,95.2016666666665,68.659,21.2816666666668,33.1350000000001,0.48166666666667,15.4405555555556],\"F value\":[12.2587342136509,0.544129816860359,6.16568920231712,4.44666642679811,1.37829669341202,2.14597200733998,0.0311949051919551,\"NA\"],\"Pr(>F)\":[0.00437181182579937,0.474904092674435,0.0287950535002327,0.0159387902081939,0.263165282877167,0.168647878500492,0.862752085685407,\"NA\"]}]"
>
> as.data.frame(fromJSON(a_j))
Df Sum.Sq Mean.Sq F.value.12.2587342136509
1 1 189.2816667 189.2816667 12.25873
2 1 8.4016667 8.4016667 12.25873
3 1 95.2016667 95.2016667 12.25873
4 5 343.2950000 68.6590000 12.25873
5 1 21.2816667 21.2816667 12.25873
6 1 33.1350000 33.1350000 12.25873
7 1 0.4816667 0.4816667 12.25873
8 12 185.2866667 15.4405556 12.25873
F.value.0.544129816860359 F.value.6.16568920231712
1 0.5441298 6.165689
2 0.5441298 6.165689
3 0.5441298 6.165689
4 0.5441298 6.165689
5 0.5441298 6.165689
6 0.5441298 6.165689
7 0.5441298 6.165689
8 0.5441298 6.165689
F.value.4.44666642679811 F.value.1.37829669341202
1 4.446666 1.378297
2 4.446666 1.378297
3 4.446666 1.378297
4 4.446666 1.378297
5 4.446666 1.378297
6 4.446666 1.378297
7 4.446666 1.378297
8 4.446666 1.378297
F.value.2.14597200733998 F.value.0.0311949051919551 F.value..NA.
1 2.145972 0.03119491 NA
2 2.145972 0.03119491 NA
3 2.145972 0.03119491 NA
4 2.145972 0.03119491 NA
5 2.145972 0.03119491 NA
6 2.145972 0.03119491 NA
7 2.145972 0.03119491 NA
8 2.145972 0.03119491 NA
Pr..F..0.00437181182579937 Pr..F..0.474904092674435
1 0.004371812 0.4749041
2 0.004371812 0.4749041
3 0.004371812 0.4749041
4 0.004371812 0.4749041
5 0.004371812 0.4749041
6 0.004371812 0.4749041
7 0.004371812 0.4749041
8 0.004371812 0.4749041
Pr..F..0.0287950535002327 Pr..F..0.0159387902081939
1 0.02879505 0.01593879
2 0.02879505 0.01593879
3 0.02879505 0.01593879
4 0.02879505 0.01593879
5 0.02879505 0.01593879
6 0.02879505 0.01593879
7 0.02879505 0.01593879
8 0.02879505 0.01593879
Pr..F..0.263165282877167 Pr..F..0.168647878500492
1 0.2631653 0.1686479
2 0.2631653 0.1686479
3 0.2631653 0.1686479
4 0.2631653 0.1686479
5 0.2631653 0.1686479
6 0.2631653 0.1686479
7 0.2631653 0.1686479
8 0.2631653 0.1686479
Pr..F..0.862752085685407 Pr..F...NA.
1 0.8627521 NA
2 0.8627521 NA
3 0.8627521 NA
4 0.8627521 NA
5 0.8627521 NA
6 0.8627521 NA
7 0.8627521 NA
8 0.8627521 NA
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
anova Of Json Format , Turn into R When the format , Use data.frame The effect is not very good .
If there's a good solution , Update again !

边栏推荐
- Why must Oracle cloud customers self test after the release of Oracle cloud quarterly update?
- CMOS level circuit analysis
- 招标公告:上海市研发公共服务平台管理中心Oracle一体机软硬件维保项目
- 剑指 Offer II 039. 直方图最大矩形面积 单调栈
- 同花顺能开户炒股吗?安全吗?
- 事务的四大特性
- [daily 3 questions (3)] maximum number of balls in the box
- CMOS级电路分析
- 每日3题(2):检查二进制字符串字段
- Pytoch learning 2 (CNN)
猜你喜欢

Privacy computing fat offline prediction

How to set the compatibility mode of 360 speed browser
![[OS command injection] common OS command execution functions and OS command injection utilization examples and range experiments - based on DVWA range](/img/f2/458770fc74971bef23f96f87733ee5.png)
[OS command injection] common OS command execution functions and OS command injection utilization examples and range experiments - based on DVWA range

How to solve the problem of missing language bar in win10 system

Tsinghua & Shangtang & Shanghai AI & CUHK proposed Siamese image modeling, which has both linear probing and intensive prediction performance

At a time of oversupply of chips, China, the largest importer, continued to reduce imports, and the United States panicked

How to select cross-border e-commerce multi merchant system

美国芯片再遭重击,继Intel后又一家芯片企业将被中国芯片超越

NAACL 2022 | TAMT:通过下游任务无关掩码训练搜索可迁移的BERT子网络

重读经典:《The Craft of Research(1)》
随机推荐
Quickly set up a website to visit foreign countries, set up SS and start BBR to quickly surf the Internet
CCID Consulting released the database Market Research Report on key application fields during the "14th five year plan" (attached with download)
基于 xml 配置文件的入门级 SSM 框架整合
【业务安全03】密码找回业务安全以及接口参数账号修改实例(基于metinfov4.0平台)
剑指 Offer II 039. 直方图最大矩形面积 单调栈
【业务安全-01】业务安全概述及测试流程
[安洵杯 2019]Attack
关于接口测试自动化的总结与思考
【问题解决】Tensorflow中run究竟运行了哪些节点?
Kotlin函数使用示例教程
[XMAN2018排位赛]通行证
The global chip market may stagnate, and China's chip expansion accelerates to improve its self-sufficiency rate against the trend
美国芯片再遭重击,继Intel后又一家芯片企业将被中国芯片超越
PCL库——报错解决:安装时遇到的cmake与anaconda的冲突问题
Brief reading of dynamic networks and conditional computing papers and code collection
External memory
Resolve activity startup - lifecycle Perspective
Rereading the classic: the craft of research (1)
做一篇人人能搞懂的ThreadLocal(源码)
NLP - monocleaner