当前位置:网站首页>[2022 Guangdong saim] Lagrange interpolation (multivariate function extreme value divide and conquer NTT)
[2022 Guangdong saim] Lagrange interpolation (multivariate function extreme value divide and conquer NTT)
2022-07-06 08:19:00 【Messy wind】
The question
Seeking satisfaction ∑ i = 1 k x i 2 a i 2 = 1 \sum\limits_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} = 1 i=1∑kai2xi2=1 Under the condition of , From the length to m m m Array of b b b Middle selection k k k It's made up of numbers a 1 , a 2 , ⋯ , a k a_1,a_2,\cdots,a_k a1,a2,⋯,ak, ∏ i = 1 k x i \prod\limits_{i = 1} ^{k} x_i i=1∏kxi The expectation of the maximum value of , k k k For the even .
( 1 ≤ k ≤ m ≤ 1 0 5 , 0 < b i < 1 0 9 ) (1 \le k \le m \le 10 ^ 5, 0 < b_i < 10 ^ 9) (1≤k≤m≤105,0<bi<109)
analysis :
First, the Lagrange multiplier method of conditional extremum of multivariate functions in advanced mathematics is used to solve the maximum value , set up
L ( x 1 , x 2 , ⋯ , x k , λ ) = ∏ i = 1 k x i + λ ( ∑ i = 1 k x i 2 a i 2 − 1 ) L(x_1,x_2,\cdots,x_k, \lambda) = \prod_{i = 1} ^{k} x_i + \lambda(\sum\limits_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} - 1) L(x1,x2,⋯,xk,λ)=i=1∏kxi+λ(i=1∑kai2xi2−1)
Find the partial derivative of each variable , Let the partial derivative be 0 0 0 have to
∂ L ∂ x 1 = ∏ i = 1 k x i x 1 + 2 λ x 1 a 1 2 = 0 ∂ L ∂ x 2 = ∏ i = 1 k x i x 2 + 2 λ x 2 a 2 2 = 0 ⋯ ∂ L ∂ x k = ∏ i = 1 k x i x k + 2 λ x k a k 2 = 0 ∂ L ∂ λ = ∑ i = 1 k x i 2 a i 2 − 1 = 0 \frac{\partial L}{\partial x_1} = \frac{\prod\limits_{i = 1} ^{k} x_i}{x_1} + \frac{2\lambda x_1}{a_1 ^ 2} = 0 \\ \frac{\partial L}{\partial x_2} = \frac{\prod\limits_{i = 1} ^{k} x_i}{x_2} + \frac{2\lambda x_2}{a_2 ^ 2} = 0 \\ \cdots \\ \frac{\partial L}{\partial x_k} = \frac{\prod\limits_{i = 1} ^{k} x_i}{x_k} + \frac{2\lambda x_k}{a_k ^ 2} = 0 \\ \frac{\partial L}{\partial \lambda} = \sum_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} - 1 = 0 ∂x1∂L=x1i=1∏kxi+a122λx1=0∂x2∂L=x2i=1∏kxi+a222λx2=0⋯∂xk∂L=xki=1∏kxi+ak22λxk=0∂λ∂L=i=1∑kai2xi2−1=0
Then simplify it a little , about 1 ≤ i ≤ k 1 \le i \le k 1≤i≤k There are
∏ i = 1 k x i = − 2 λ x i 2 a i 2 \prod_{i = 1} ^ {k}x_i = \frac{-2\lambda x_i ^ 2}{a_i ^ 2} i=1∏kxi=ai2−2λxi2
Through any two formulas 1 ≤ i , j ≤ k 1 \le i, j \le k 1≤i,j≤k Simultaneous elimination λ \lambda λ
a i 2 ∏ i = 1 k x i − 2 x i 2 = a j 2 ∏ i = 1 k x i − 2 x j 2 \frac{a_i ^ 2\prod\limits_{i = 1} ^ {k}x_i}{-2x_i ^ 2} = \frac{a_j ^ 2\prod\limits_{i = 1} ^ {k}x_i}{-2x_j ^ 2} −2xi2ai2i=1∏kxi=−2xj2aj2i=1∏kxi
Simplify to
x i a i = x j a j \frac{x_i}{a_i} = \frac{x_j}{a_j} aixi=ajxj
So if and only if x 1 a 1 = x 2 a 2 = ⋯ = x k a k \dfrac{x_1}{a_1} = \dfrac{x_2}{a_2}=\cdots=\dfrac{x_k}{a_k} a1x1=a2x2=⋯=akxk Maximum value when , And ∑ i = 1 k x i 2 a i 2 = 1 \sum\limits_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} = 1 i=1∑kai2xi2=1, So for any 1 ≤ i ≤ k 1 \le i \le k 1≤i≤k There are x i a i = ± 1 k \dfrac{x_i}{a_i} = \pm \sqrt{\dfrac{1}{k}} aixi=±k1, that ∏ i = 1 k x i = k − k 2 ∏ i = 1 k a i \prod\limits_{i = 1} ^{k} x_i = k ^ {- \frac{k}{2}}\prod\limits_{i = 1} ^ {k} a_i i=1∏kxi=k−2ki=1∏kai, because k k k For the even , So it must be positive , And k 2 \dfrac{k}{2} 2k It must be an integer .
Seek from b b b Select... From the array k k k Sum of all products of numbers , Consider constructing a generating function
F ( x ) = ∏ i = 1 k ( 1 + b i x ) F(x) = \prod_{i = 1} ^ {k} (1 + b_ix) F(x)=i=1∏k(1+bix)
that [ x k ] F ( x ) [x ^ k]F(x) [xk]F(x) Is to choose k k k Sum of all products of numbers , All in all ( m k ) \dbinom{m}{k} (km) Seed selection , So the expectation is
k − k 2 × [ x k ] F ( x ) ( m k ) k ^ {-\frac{k}{2}} \times \frac{[x ^ k]F(x)}{\dbinom{m}{k}} k−2k×(km)[xk]F(x)
F ( x ) F(x) F(x) Divide and conquer available NTT \text{NTT} NTT Calculation , Total time complexity O ( n log 2 n ) O(n\log ^ 2n) O(nlog2n)
Code :
#include <bits/stdc++.h>
#define int long long
#define poly vector<int>
#define len(x) ((int)x.size())
using namespace std;
const int N = 3e5 + 5, G = 3, Ginv = 332748118, mod = 998244353;
int rev[N], lim;
int qmi(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
void polyinit(int n) {
for (lim = 1; lim < n; lim <<= 1);
for (int i = 0; i < lim; i ++) rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? lim >> 1 : 0);
}
void NTT(poly &f, int op) {
for (int i = 0; i < lim; i ++) {
if (i < rev[i]) swap(f[i], f[rev[i]]);
}
for (int mid = 1; mid < lim; mid <<= 1) {
int Gn = qmi(op == 1 ? G : Ginv, (mod - 1) / (mid << 1));
for (int i = 0; i < lim; i += mid * 2) {
for (int j = 0, G0 = 1; j < mid; j ++, G0 = G0 * Gn % mod) {
int x = f[i + j], y = G0 * f[i + j + mid] % mod;
f[i + j] = (x + y) % mod, f[i + j + mid] = (x - y + mod) % mod;
}
}
}
if (op == -1) {
int inv = qmi(lim, mod - 2);
for (int i = 0; i < lim; i ++) f[i] = f[i] * inv % mod;
}
}
poly operator * (poly f, poly g) {
int n = len(f) + len(g) - 1;
polyinit(n), f.resize(lim), g.resize(lim);
NTT(f, 1), NTT(g, 1);
for (int i = 0; i < lim; i ++) f[i] = f[i] * g[i] % mod;
NTT(f, -1), f.resize(n);
return f;
}
vector<int> fact, infact;
void init(int n) {
fact.resize(n + 1), infact.resize(n + 1);
fact[0] = infact[0] = 1;
for (int i = 1; i <= n; i ++) {
fact[i] = fact[i - 1] * i % mod;
}
infact[n] = qmi(fact[n], mod - 2);
for (int i = n; i; i --) {
infact[i - 1] = infact[i] * i % mod;
}
}
int C(int n, int m) {
if (n < 0 || m < 0 || n < m) return 0ll;
return fact[n] * infact[n - m] % mod * infact[m] % mod;
}
signed main() {
cin.tie(0) -> sync_with_stdio(0);
init(1e5);
int n, k;
cin >> n >> k;
vector<int> b(n + 1);
vector<poly> f(n + 1, poly(2));
for (int i = 1; i <= n; i ++) {
cin >> b[i];
f[i][0] = 1, f[i][1] = b[i];
}
function<poly(int, int)> dc = [&](int l, int r) {
if (l == r) return f[l];
int mid = l + r >> 1;
return dc(l, mid) * dc(mid + 1, r);
};
poly ans = dc(1, n);
int res = 1;
cout << qmi(qmi(k, k / 2), mod - 2) * ans[k] % mod * qmi(C(n, k), mod - 2) % mod << endl;
}
边栏推荐
- Wincc7.5 download and installation tutorial (win10 system)
- Restore backup data on S3 compatible storage with tidb lightning
- CAD ARX gets the current viewport settings
- Go learning notes (3) basic types and statements (2)
- [Yugong series] February 2022 U3D full stack class 011 unity section 1 mind map
- The State Economic Information Center "APEC industry +" Western Silicon Valley will invest 2trillion yuan in Chengdu Chongqing economic circle, which will surpass the observation of Shanghai | stable
- [research materials] 2022 China yuancosmos white paper - Download attached
- "Designer universe" APEC design +: the list of winners of the Paris Design Award in France was recently announced. The winners of "Changsha world center Damei mansion" were awarded by the national eco
- 08- [istio] istio gateway, virtual service and the relationship between them
- What are the ways to download network pictures with PHP
猜你喜欢

Pyqt5 development tips - obtain Manhattan distance between coordinates

3. File operation 3-with

Understanding of law of large numbers and central limit theorem

24. Query table data (basic)
![[research materials] 2022 enterprise wechat Ecosystem Research Report - Download attached](/img/35/898a8086bc35462b0fcb9e6b58b86b.jpg)
[research materials] 2022 enterprise wechat Ecosystem Research Report - Download attached

Use Alibaba icon in uniapp

synchronized 解决共享带来的问题

Wincc7.5 download and installation tutorial (win10 system)

2. File operation - write

Epoll and IO multiplexing of redis
随机推荐
2. File operation - write
将 NFT 设置为 ENS 个人资料头像的分步指南
Sanzi chess (C language)
"Friendship and righteousness" of the center for national economy and information technology: China's friendship wine - the "unparalleled loyalty and righteousness" of the solidarity group released th
Tidb backup and recovery introduction
IP lab, the first weekly recheck
Vocabulary notes for postgraduate entrance examination (3)
Pyqt5 development tips - obtain Manhattan distance between coordinates
[luatos-air551g] 6.2 repair: restart caused by line drawing
[2022 广东省赛M] 拉格朗日插值 (多元函数极值 分治NTT)
Webrtc series-h.264 estimated bit rate calculation
2.10transfrom attribute
Wincc7.5 download and installation tutorial (win10 system)
Nft智能合约发行,盲盒,公开发售技术实战--拼图篇
使用 Dumpling 备份 TiDB 集群数据到兼容 S3 的存储
Chinese Remainder Theorem (Sun Tzu theorem) principle and template code
NFT smart contract release, blind box, public offering technology practice -- contract
Uibehavior, a comprehensive exploration of ugui source code
指针进阶---指针数组,数组指针
On why we should program for all