当前位置:网站首页>[2022 Guangdong saim] Lagrange interpolation (multivariate function extreme value divide and conquer NTT)
[2022 Guangdong saim] Lagrange interpolation (multivariate function extreme value divide and conquer NTT)
2022-07-06 08:19:00 【Messy wind】
The question
Seeking satisfaction ∑ i = 1 k x i 2 a i 2 = 1 \sum\limits_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} = 1 i=1∑kai2xi2=1 Under the condition of , From the length to m m m Array of b b b Middle selection k k k It's made up of numbers a 1 , a 2 , ⋯ , a k a_1,a_2,\cdots,a_k a1,a2,⋯,ak, ∏ i = 1 k x i \prod\limits_{i = 1} ^{k} x_i i=1∏kxi The expectation of the maximum value of , k k k For the even .
( 1 ≤ k ≤ m ≤ 1 0 5 , 0 < b i < 1 0 9 ) (1 \le k \le m \le 10 ^ 5, 0 < b_i < 10 ^ 9) (1≤k≤m≤105,0<bi<109)
analysis :
First, the Lagrange multiplier method of conditional extremum of multivariate functions in advanced mathematics is used to solve the maximum value , set up
L ( x 1 , x 2 , ⋯ , x k , λ ) = ∏ i = 1 k x i + λ ( ∑ i = 1 k x i 2 a i 2 − 1 ) L(x_1,x_2,\cdots,x_k, \lambda) = \prod_{i = 1} ^{k} x_i + \lambda(\sum\limits_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} - 1) L(x1,x2,⋯,xk,λ)=i=1∏kxi+λ(i=1∑kai2xi2−1)
Find the partial derivative of each variable , Let the partial derivative be 0 0 0 have to
∂ L ∂ x 1 = ∏ i = 1 k x i x 1 + 2 λ x 1 a 1 2 = 0 ∂ L ∂ x 2 = ∏ i = 1 k x i x 2 + 2 λ x 2 a 2 2 = 0 ⋯ ∂ L ∂ x k = ∏ i = 1 k x i x k + 2 λ x k a k 2 = 0 ∂ L ∂ λ = ∑ i = 1 k x i 2 a i 2 − 1 = 0 \frac{\partial L}{\partial x_1} = \frac{\prod\limits_{i = 1} ^{k} x_i}{x_1} + \frac{2\lambda x_1}{a_1 ^ 2} = 0 \\ \frac{\partial L}{\partial x_2} = \frac{\prod\limits_{i = 1} ^{k} x_i}{x_2} + \frac{2\lambda x_2}{a_2 ^ 2} = 0 \\ \cdots \\ \frac{\partial L}{\partial x_k} = \frac{\prod\limits_{i = 1} ^{k} x_i}{x_k} + \frac{2\lambda x_k}{a_k ^ 2} = 0 \\ \frac{\partial L}{\partial \lambda} = \sum_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} - 1 = 0 ∂x1∂L=x1i=1∏kxi+a122λx1=0∂x2∂L=x2i=1∏kxi+a222λx2=0⋯∂xk∂L=xki=1∏kxi+ak22λxk=0∂λ∂L=i=1∑kai2xi2−1=0
Then simplify it a little , about 1 ≤ i ≤ k 1 \le i \le k 1≤i≤k There are
∏ i = 1 k x i = − 2 λ x i 2 a i 2 \prod_{i = 1} ^ {k}x_i = \frac{-2\lambda x_i ^ 2}{a_i ^ 2} i=1∏kxi=ai2−2λxi2
Through any two formulas 1 ≤ i , j ≤ k 1 \le i, j \le k 1≤i,j≤k Simultaneous elimination λ \lambda λ
a i 2 ∏ i = 1 k x i − 2 x i 2 = a j 2 ∏ i = 1 k x i − 2 x j 2 \frac{a_i ^ 2\prod\limits_{i = 1} ^ {k}x_i}{-2x_i ^ 2} = \frac{a_j ^ 2\prod\limits_{i = 1} ^ {k}x_i}{-2x_j ^ 2} −2xi2ai2i=1∏kxi=−2xj2aj2i=1∏kxi
Simplify to
x i a i = x j a j \frac{x_i}{a_i} = \frac{x_j}{a_j} aixi=ajxj
So if and only if x 1 a 1 = x 2 a 2 = ⋯ = x k a k \dfrac{x_1}{a_1} = \dfrac{x_2}{a_2}=\cdots=\dfrac{x_k}{a_k} a1x1=a2x2=⋯=akxk Maximum value when , And ∑ i = 1 k x i 2 a i 2 = 1 \sum\limits_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} = 1 i=1∑kai2xi2=1, So for any 1 ≤ i ≤ k 1 \le i \le k 1≤i≤k There are x i a i = ± 1 k \dfrac{x_i}{a_i} = \pm \sqrt{\dfrac{1}{k}} aixi=±k1, that ∏ i = 1 k x i = k − k 2 ∏ i = 1 k a i \prod\limits_{i = 1} ^{k} x_i = k ^ {- \frac{k}{2}}\prod\limits_{i = 1} ^ {k} a_i i=1∏kxi=k−2ki=1∏kai, because k k k For the even , So it must be positive , And k 2 \dfrac{k}{2} 2k It must be an integer .
Seek from b b b Select... From the array k k k Sum of all products of numbers , Consider constructing a generating function
F ( x ) = ∏ i = 1 k ( 1 + b i x ) F(x) = \prod_{i = 1} ^ {k} (1 + b_ix) F(x)=i=1∏k(1+bix)
that [ x k ] F ( x ) [x ^ k]F(x) [xk]F(x) Is to choose k k k Sum of all products of numbers , All in all ( m k ) \dbinom{m}{k} (km) Seed selection , So the expectation is
k − k 2 × [ x k ] F ( x ) ( m k ) k ^ {-\frac{k}{2}} \times \frac{[x ^ k]F(x)}{\dbinom{m}{k}} k−2k×(km)[xk]F(x)
F ( x ) F(x) F(x) Divide and conquer available NTT \text{NTT} NTT Calculation , Total time complexity O ( n log 2 n ) O(n\log ^ 2n) O(nlog2n)
Code :
#include <bits/stdc++.h>
#define int long long
#define poly vector<int>
#define len(x) ((int)x.size())
using namespace std;
const int N = 3e5 + 5, G = 3, Ginv = 332748118, mod = 998244353;
int rev[N], lim;
int qmi(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
void polyinit(int n) {
for (lim = 1; lim < n; lim <<= 1);
for (int i = 0; i < lim; i ++) rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? lim >> 1 : 0);
}
void NTT(poly &f, int op) {
for (int i = 0; i < lim; i ++) {
if (i < rev[i]) swap(f[i], f[rev[i]]);
}
for (int mid = 1; mid < lim; mid <<= 1) {
int Gn = qmi(op == 1 ? G : Ginv, (mod - 1) / (mid << 1));
for (int i = 0; i < lim; i += mid * 2) {
for (int j = 0, G0 = 1; j < mid; j ++, G0 = G0 * Gn % mod) {
int x = f[i + j], y = G0 * f[i + j + mid] % mod;
f[i + j] = (x + y) % mod, f[i + j + mid] = (x - y + mod) % mod;
}
}
}
if (op == -1) {
int inv = qmi(lim, mod - 2);
for (int i = 0; i < lim; i ++) f[i] = f[i] * inv % mod;
}
}
poly operator * (poly f, poly g) {
int n = len(f) + len(g) - 1;
polyinit(n), f.resize(lim), g.resize(lim);
NTT(f, 1), NTT(g, 1);
for (int i = 0; i < lim; i ++) f[i] = f[i] * g[i] % mod;
NTT(f, -1), f.resize(n);
return f;
}
vector<int> fact, infact;
void init(int n) {
fact.resize(n + 1), infact.resize(n + 1);
fact[0] = infact[0] = 1;
for (int i = 1; i <= n; i ++) {
fact[i] = fact[i - 1] * i % mod;
}
infact[n] = qmi(fact[n], mod - 2);
for (int i = n; i; i --) {
infact[i - 1] = infact[i] * i % mod;
}
}
int C(int n, int m) {
if (n < 0 || m < 0 || n < m) return 0ll;
return fact[n] * infact[n - m] % mod * infact[m] % mod;
}
signed main() {
cin.tie(0) -> sync_with_stdio(0);
init(1e5);
int n, k;
cin >> n >> k;
vector<int> b(n + 1);
vector<poly> f(n + 1, poly(2));
for (int i = 1; i <= n; i ++) {
cin >> b[i];
f[i][0] = 1, f[i][1] = b[i];
}
function<poly(int, int)> dc = [&](int l, int r) {
if (l == r) return f[l];
int mid = l + r >> 1;
return dc(l, mid) * dc(mid + 1, r);
};
poly ans = dc(1, n);
int res = 1;
cout << qmi(qmi(k, k / 2), mod - 2) * ans[k] % mod * qmi(C(n, k), mod - 2) % mod << endl;
}
边栏推荐
- Step by step guide to setting NFT as an ens profile Avatar
- Oracle time display adjustment
- JS select all and tab bar switching, simple comments
- 让学指针变得更简单(三)
- "Designer universe": "benefit dimension" APEC public welfare + 2022 the latest slogan and the new platform will be launched soon | Asia Pacific Financial Media
- C语言自定义类型:结构体
- 华为云OBS文件上传下载工具类
- Online yaml to CSV tool
- A Closer Look at How Fine-tuning Changes BERT
- The Vice Minister of the Ministry of industry and information technology of "APEC industry +" of the national economic and information technology center led a team to Sichuan to investigate the operat
猜你喜欢
![08- [istio] istio gateway, virtual service and the relationship between them](/img/fb/09793f5fd12c2906b73cc42722165f.jpg)
08- [istio] istio gateway, virtual service and the relationship between them

Zhong Xuegao, who cannot be melted, cannot escape the life cycle of online celebrity products

Learn Arduino with examples
![[cloud native] teach you how to build ferry open source work order system](/img/fb/507f763791235bd00bc8201e5d7741.png)
[cloud native] teach you how to build ferry open source work order system

Artcube information of "designer universe": Guangzhou implements the community designer system to achieve "great improvement" of urban quality | national economic and Information Center

hcip--mpls

Summary of phased use of sonic one-stop open source distributed cluster cloud real machine test platform

Yyds dry goods inventory three JS source code interpretation eventdispatcher

C language custom type: struct

The ECU of 21 Audi q5l 45tfsi brushes is upgraded to master special adjustment, and the horsepower is safely and stably increased to 305 horsepower
随机推荐
Circuit breaker: use of hystrix
[luatos-air551g] 6.2 repair: restart caused by line drawing
Ruffian Heng embedded bimonthly, issue 49
Data governance: data quality
Image fusion -- challenges, opportunities and Countermeasures
2. File operation - write
Entity class design for calculating age based on birthday
Webrtc series-h.264 estimated bit rate calculation
vulnhub hackme: 1
Easy to use tcp-udp_ Debug tool download and use
Golang DNS write casually
MFC sends left click, double click, and right click messages to list controls
Remote storage access authorization
"Friendship and righteousness" of the center for national economy and information technology: China's friendship wine - the "unparalleled loyalty and righteousness" of the solidarity group released th
C语言自定义类型:结构体
Upgrade tidb operator
wincc7.5下载安装教程(Win10系统)
ESP series pin description diagram summary
Mobile Test Engineer occupation yyds dry goods inventory
Flash return file download