当前位置:网站首页>[2022 Guangdong saim] Lagrange interpolation (multivariate function extreme value divide and conquer NTT)
[2022 Guangdong saim] Lagrange interpolation (multivariate function extreme value divide and conquer NTT)
2022-07-06 08:19:00 【Messy wind】
The question
Seeking satisfaction ∑ i = 1 k x i 2 a i 2 = 1 \sum\limits_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} = 1 i=1∑kai2xi2=1 Under the condition of , From the length to m m m Array of b b b Middle selection k k k It's made up of numbers a 1 , a 2 , ⋯ , a k a_1,a_2,\cdots,a_k a1,a2,⋯,ak, ∏ i = 1 k x i \prod\limits_{i = 1} ^{k} x_i i=1∏kxi The expectation of the maximum value of , k k k For the even .
( 1 ≤ k ≤ m ≤ 1 0 5 , 0 < b i < 1 0 9 ) (1 \le k \le m \le 10 ^ 5, 0 < b_i < 10 ^ 9) (1≤k≤m≤105,0<bi<109)
analysis :
First, the Lagrange multiplier method of conditional extremum of multivariate functions in advanced mathematics is used to solve the maximum value , set up
L ( x 1 , x 2 , ⋯ , x k , λ ) = ∏ i = 1 k x i + λ ( ∑ i = 1 k x i 2 a i 2 − 1 ) L(x_1,x_2,\cdots,x_k, \lambda) = \prod_{i = 1} ^{k} x_i + \lambda(\sum\limits_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} - 1) L(x1,x2,⋯,xk,λ)=i=1∏kxi+λ(i=1∑kai2xi2−1)
Find the partial derivative of each variable , Let the partial derivative be 0 0 0 have to
∂ L ∂ x 1 = ∏ i = 1 k x i x 1 + 2 λ x 1 a 1 2 = 0 ∂ L ∂ x 2 = ∏ i = 1 k x i x 2 + 2 λ x 2 a 2 2 = 0 ⋯ ∂ L ∂ x k = ∏ i = 1 k x i x k + 2 λ x k a k 2 = 0 ∂ L ∂ λ = ∑ i = 1 k x i 2 a i 2 − 1 = 0 \frac{\partial L}{\partial x_1} = \frac{\prod\limits_{i = 1} ^{k} x_i}{x_1} + \frac{2\lambda x_1}{a_1 ^ 2} = 0 \\ \frac{\partial L}{\partial x_2} = \frac{\prod\limits_{i = 1} ^{k} x_i}{x_2} + \frac{2\lambda x_2}{a_2 ^ 2} = 0 \\ \cdots \\ \frac{\partial L}{\partial x_k} = \frac{\prod\limits_{i = 1} ^{k} x_i}{x_k} + \frac{2\lambda x_k}{a_k ^ 2} = 0 \\ \frac{\partial L}{\partial \lambda} = \sum_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} - 1 = 0 ∂x1∂L=x1i=1∏kxi+a122λx1=0∂x2∂L=x2i=1∏kxi+a222λx2=0⋯∂xk∂L=xki=1∏kxi+ak22λxk=0∂λ∂L=i=1∑kai2xi2−1=0
Then simplify it a little , about 1 ≤ i ≤ k 1 \le i \le k 1≤i≤k There are
∏ i = 1 k x i = − 2 λ x i 2 a i 2 \prod_{i = 1} ^ {k}x_i = \frac{-2\lambda x_i ^ 2}{a_i ^ 2} i=1∏kxi=ai2−2λxi2
Through any two formulas 1 ≤ i , j ≤ k 1 \le i, j \le k 1≤i,j≤k Simultaneous elimination λ \lambda λ
a i 2 ∏ i = 1 k x i − 2 x i 2 = a j 2 ∏ i = 1 k x i − 2 x j 2 \frac{a_i ^ 2\prod\limits_{i = 1} ^ {k}x_i}{-2x_i ^ 2} = \frac{a_j ^ 2\prod\limits_{i = 1} ^ {k}x_i}{-2x_j ^ 2} −2xi2ai2i=1∏kxi=−2xj2aj2i=1∏kxi
Simplify to
x i a i = x j a j \frac{x_i}{a_i} = \frac{x_j}{a_j} aixi=ajxj
So if and only if x 1 a 1 = x 2 a 2 = ⋯ = x k a k \dfrac{x_1}{a_1} = \dfrac{x_2}{a_2}=\cdots=\dfrac{x_k}{a_k} a1x1=a2x2=⋯=akxk Maximum value when , And ∑ i = 1 k x i 2 a i 2 = 1 \sum\limits_{i = 1} ^ {k}\dfrac{x_i ^ 2}{a_i ^ 2} = 1 i=1∑kai2xi2=1, So for any 1 ≤ i ≤ k 1 \le i \le k 1≤i≤k There are x i a i = ± 1 k \dfrac{x_i}{a_i} = \pm \sqrt{\dfrac{1}{k}} aixi=±k1, that ∏ i = 1 k x i = k − k 2 ∏ i = 1 k a i \prod\limits_{i = 1} ^{k} x_i = k ^ {- \frac{k}{2}}\prod\limits_{i = 1} ^ {k} a_i i=1∏kxi=k−2ki=1∏kai, because k k k For the even , So it must be positive , And k 2 \dfrac{k}{2} 2k It must be an integer .
Seek from b b b Select... From the array k k k Sum of all products of numbers , Consider constructing a generating function
F ( x ) = ∏ i = 1 k ( 1 + b i x ) F(x) = \prod_{i = 1} ^ {k} (1 + b_ix) F(x)=i=1∏k(1+bix)
that [ x k ] F ( x ) [x ^ k]F(x) [xk]F(x) Is to choose k k k Sum of all products of numbers , All in all ( m k ) \dbinom{m}{k} (km) Seed selection , So the expectation is
k − k 2 × [ x k ] F ( x ) ( m k ) k ^ {-\frac{k}{2}} \times \frac{[x ^ k]F(x)}{\dbinom{m}{k}} k−2k×(km)[xk]F(x)
F ( x ) F(x) F(x) Divide and conquer available NTT \text{NTT} NTT Calculation , Total time complexity O ( n log 2 n ) O(n\log ^ 2n) O(nlog2n)
Code :
#include <bits/stdc++.h>
#define int long long
#define poly vector<int>
#define len(x) ((int)x.size())
using namespace std;
const int N = 3e5 + 5, G = 3, Ginv = 332748118, mod = 998244353;
int rev[N], lim;
int qmi(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
void polyinit(int n) {
for (lim = 1; lim < n; lim <<= 1);
for (int i = 0; i < lim; i ++) rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? lim >> 1 : 0);
}
void NTT(poly &f, int op) {
for (int i = 0; i < lim; i ++) {
if (i < rev[i]) swap(f[i], f[rev[i]]);
}
for (int mid = 1; mid < lim; mid <<= 1) {
int Gn = qmi(op == 1 ? G : Ginv, (mod - 1) / (mid << 1));
for (int i = 0; i < lim; i += mid * 2) {
for (int j = 0, G0 = 1; j < mid; j ++, G0 = G0 * Gn % mod) {
int x = f[i + j], y = G0 * f[i + j + mid] % mod;
f[i + j] = (x + y) % mod, f[i + j + mid] = (x - y + mod) % mod;
}
}
}
if (op == -1) {
int inv = qmi(lim, mod - 2);
for (int i = 0; i < lim; i ++) f[i] = f[i] * inv % mod;
}
}
poly operator * (poly f, poly g) {
int n = len(f) + len(g) - 1;
polyinit(n), f.resize(lim), g.resize(lim);
NTT(f, 1), NTT(g, 1);
for (int i = 0; i < lim; i ++) f[i] = f[i] * g[i] % mod;
NTT(f, -1), f.resize(n);
return f;
}
vector<int> fact, infact;
void init(int n) {
fact.resize(n + 1), infact.resize(n + 1);
fact[0] = infact[0] = 1;
for (int i = 1; i <= n; i ++) {
fact[i] = fact[i - 1] * i % mod;
}
infact[n] = qmi(fact[n], mod - 2);
for (int i = n; i; i --) {
infact[i - 1] = infact[i] * i % mod;
}
}
int C(int n, int m) {
if (n < 0 || m < 0 || n < m) return 0ll;
return fact[n] * infact[n - m] % mod * infact[m] % mod;
}
signed main() {
cin.tie(0) -> sync_with_stdio(0);
init(1e5);
int n, k;
cin >> n >> k;
vector<int> b(n + 1);
vector<poly> f(n + 1, poly(2));
for (int i = 1; i <= n; i ++) {
cin >> b[i];
f[i][0] = 1, f[i][1] = b[i];
}
function<poly(int, int)> dc = [&](int l, int r) {
if (l == r) return f[l];
int mid = l + r >> 1;
return dc(l, mid) * dc(mid + 1, r);
};
poly ans = dc(1, n);
int res = 1;
cout << qmi(qmi(k, k / 2), mod - 2) * ans[k] % mod * qmi(C(n, k), mod - 2) % mod << endl;
}
边栏推荐
- leetcode刷题 (5.29) 哈希表
- Online yaml to CSV tool
- MFC sends left click, double click, and right click messages to list controls
- Sanzi chess (C language)
- Common functions for PHP to process strings
- Upgrade tidb with tiup
- Mobile Test Engineer occupation yyds dry goods inventory
- The Vice Minister of the Ministry of industry and information technology of "APEC industry +" of the national economic and information technology center led a team to Sichuan to investigate the operat
- 【云原生】手把手教你搭建ferry开源工单系统
- MFC 给列表控件发送左键单击、双击、以及右键单击消息
猜你喜欢
Go learning notes (3) basic types and statements (2)
IP lab, the first weekly recheck
Sanzi chess (C language)
[research materials] 2021 Research Report on China's smart medical industry - Download attached
Wincc7.5 download and installation tutorial (win10 system)
2022 Inner Mongolia latest water conservancy and hydropower construction safety officer simulation examination questions and answers
Make learning pointer easier (3)
Hcip day 16
Wireshark grabs packets to understand its word TCP segment
"Designer universe": "benefit dimension" APEC public welfare + 2022 the latest slogan and the new platform will be launched soon | Asia Pacific Financial Media
随机推荐
[research materials] 2021 China online high growth white paper - Download attached
A Closer Look at How Fine-tuning Changes BERT
图像融合--挑战、机遇与对策
Nft智能合约发行,盲盒,公开发售技术实战--拼图篇
[research materials] 2021 Research Report on China's smart medical industry - Download attached
"Designer universe" Guangdong responds to the opinions of the national development and Reform Commission. Primary school students incarnate as small community designers | national economic and Informa
[Yugong series] February 2022 U3D full stack class 010 prefabricated parts
好用的TCP-UDP_debug工具下载和使用
Asia Pacific Financial Media | female pattern ladyvision: forced the hotel to upgrade security. The drunk woman died in the guest room, and the hotel was sentenced not to pay compensation | APEC secur
22. Empty the table
synchronized 解决共享带来的问题
Restore backup data on S3 compatible storage with tidb lightning
Make learning pointer easier (3)
Tidb backup and recovery introduction
JS select all and tab bar switching, simple comments
化不掉的钟薛高,逃不出网红产品的生命周期
What is the use of entering the critical point? How to realize STM32 single chip microcomputer?
使用 BR 恢复 S3 兼容存储上的备份数据
Migrate data from a tidb cluster to another tidb cluster
华为云OBS文件上传下载工具类