当前位置:网站首页>TensorFlow2 study notes: 8. tf.keras implements linear regression, Income dataset: years of education and income dataset

TensorFlow2 study notes: 8. tf.keras implements linear regression, Income dataset: years of education and income dataset

2022-08-04 06:05:00 Live up to [email protected]

1、Income数据集

IncomeThe dataset is machine learning、Typical learning data for linear regression in a deep learning experiment:下载Income数据集

It mainly has two types of data,受教育年限和对应的收入情况

It can be observed by the scatter plot,apparently linear relationship

数据预览:
在这里插入图片描述

散点图:
在这里插入图片描述

2、创建模型

2.1导入数据、定义特征和标签

import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
data=pd.read_csv("./Income.csv")
 
# Define input featuresx 和对应标签y
x=data.Education
y=data.Income

2.2创建模型

#顺序模型:只有一个输入和一个输出.tf.keras.Sequential()is a sequential model
model=tf.keras.Sequential()   #初始化模型
model.add(tf.keras.layers.Dense(1,input_shape=(1,)))  #添加层
model.compile(optimizer='adam',loss='mse') # Configure training items mse均方差 梯度优化Adam

通过:model.summary()function to look at the model
在这里插入图片描述

3、训练模型

model.fit(x,y,epochs=500)
#x y Feed the data features and labels defined above epochsis the number of training iterations

训练结果:
在这里插入图片描述

4、完整代码

import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
data=pd.read_csv("./Income.csv")
x=data.Education
y=data.Income
model=tf.keras.Sequential()
model.add(tf.keras.layers.Dense(1,input_shape=(1,)))
model.summary()
model.compile(optimizer='adam',loss='mse')
h=model.fit(x,y,epochs=500)

原网站

版权声明
本文为[Live up to [email protected]]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/216/202208040525327517.html