当前位置:网站首页>DDTL: Domain Transfer Learning at a Distance
DDTL: Domain Transfer Learning at a Distance
2022-08-04 01:40:00 【A moment of loss】
DDTL问题:The target domain can be completely different from the source domain.
1、A selective learning algorithm is proposed(SLA),以Supervised autoencoder or supervised convolutional autoencoderAs a base model for handling different types of input.
2、SLAThe algorithm gradually selects from the intermediate domainUseful unlabeled data作为桥梁,in order to break down the huge distributional differences in the transfer of knowledge between two distant domains.
迁移学习:Learning methods that borrow knowledge from the source domain to enhance the learning ability of the target domain

Task1:Transfer knowledge between cat and tiger images.Transfer learning algorithms achieve better performance than some supervised learning algorithms.
Task2:Transfer knowledge between human faces and airplane images.The transfer learning algorithm failed,Because its performance is worse than supervised learning algorithms.然而,当应用SLA算法时,获得了更好的性能.
1、DDTL问题定义
大小为
的Source field tag data:
;
大小为
的Target domain tag data:
;
多个The intermediate fields are unlabeled data的混合:
.
A domain corresponds to one of a particular classification problemconcept or category,Such as recognizing faces or airplanes from images.
问题描述:Assume that the classification problems in both the source and target domains are binary.All data points should be in the same feature space.设
、
和
are the source domain data边际分布、Conditional and joint distributions;The three distributions relative to the target domain are
,
,
;
is the marginal distribution of the intermediate domain.在DDTL问题中:
;
;
.
目标:利用中间域中的未标记数据,each other in the original距离较远Build a bridge between the source and target domains,And through the bridge from the source domainTransfer supervision knowledge来训练目标域accurate classifier.
PS:Not all data in the intermediate domain should be similar to the source domain data,Some of these data can be very different.因此,简单地Building bridges using all intermediate data may fail.
2、SLA:Selective Learning Algorithms
2.1Autoencoders and their variants
自动编码器是一种Unsupervised Feedforward Neural Networks,具有输入层、One or more hidden and output layers,It usually consists of two processes:编码和解码.
输入:
;
编码函数:
Encode it to map it to a hidden representation;
解码函数:
Decode to reconstructx.
The process of the autoencoder can be summarized as:
编码:
;
解码:
.
其中
is an approximation to the original inputxthe reconstructed input.By minimizing the reconstruction error on all training data,即
2.2Instance selection by reconstruction error
在实践中,Because the source domain and the target domain are far apart,Only a portion of the source domain data may be useful to the target domain,The situation is similar for intermediate domains.因此,In order to select useful instances from the intermediate domain,And remove the relevant instance of the target domain from the source domain,通过Minimize the reconstruction error for selected instances in the source and intermediate domains and all instances in the target domainto learn a pair of encoding and decoding functions.The objective function to be minimized is formulated as follows:
、
∈ {0,1}:source domainithe first instance and the intermediate domainj个实例selection indicator.当值为1时,The corresponding instance will be selected,Otherwise it will be deselected.
:
和
Regularization term on ,通过将
和
All values of are set to zero to avoid some unimportant solutions.将其定义为:
Minimizing this term is equivalent to encouraging from the source domain and the intermediate domainChoose as many instances as possible.Two regularization parameters
和
Controls the importance of this regularization term.
2.3Explanation of auxiliary information
Incorporate auxiliary information when learning hidden representations for different domains.
源域和目标域:Data tags can be used as auxiliary information;
中间域:没有标签信息.
Treat predictions on intermediate domains as auxiliary information,And use the predicted confidence to guide the learning of hidden representations.具体而言,We propose to incorporate auxiliary information into learning by minimizing the following function:
:is the classification function that outputs the classification probability;
g(·):定义为
,其中0≤ z≤ 1;
将
用于选择Instances of high prediction confidence in the intermediate domain.
2.4总体目标函数
DDTL的最终目标函数如下:
其中
;Θ表示函数
、
和
的所有参数.
Use block coordinatesdecedent(BCD)方法,在每次迭代中,在保持其他变量不变的情况下,Sequentially optimize the variables in each block.
在
selected to have low reconstruction error and low training loss;在
selected to have low reconstruction error and low training loss.
The deep learning architecture is shown in the figure below.
3、总结
This paper studies a new oneDDTL问题,The source domain and the target domain are far apart,But can be connected through some intermediate domains.为了解决DDTL问题,提出了SLA算法,from the intermediate domainGradually select unlabeled data,to connect two distant domains.
边栏推荐
- ASP.NET 获取数据库的数据并写入到excel表格中
- 通用的测试用例编写大全(登录测试/web测试等)
- Promise solves blocking synchronization and turns asynchronous into synchronous
- 如何用C语言代码实现商品管理系统开发
- KunlunBase 1.0 is released!
- GNSS【0】- 专题
- Continuing to pour money into commodities research and development, the ding-dong buy vegetables in win into the supply chain
- Multithreading JUC Learning Chapter 1 Steps to Create Multithreading
- 工程制图名词解释-重点知识
- Flask框架初学-05-命令管理Manager及数据库的使用
猜你喜欢

持续投入商品研发,叮咚买菜赢在了供应链投入上

LeetCode third topic (the Longest Substring Without Repeating Characters) trilogy # 3: two optimization

Continuing to invest in product research and development, Dingdong Maicai wins in supply chain investment

静态/动态代理模式

2022 中国算力大会发布“创新先锋”优秀成果

Demand analysis of MES management system in electronic assembly industry

如何用C语言代码实现商品管理系统开发

阿里云技术专家邓青琳:云上跨可用区容灾和异地多活最佳实践

持续投入商品研发,叮咚买菜赢在了供应链投入上

计算首屏时间
随机推荐
Hey, I had another fight with HR in the small group!
Continuing to pour money into commodities research and development, the ding-dong buy vegetables in win into the supply chain
nodejs切换版本使用(不需要卸载重装)
this巩固训练,从两道执行题加深理解闭包与箭头函数中的this
Download install and create/run project for HBuilderX
实例041:类的方法与变量
一个注解替换synchronized关键字:分布式场景下实现方法加锁
nodejs installation and environment configuration
螺旋矩阵_数组 | leecode刷题笔记
《The Google File System》新说
Vant3 - click on the corresponding name name to jump to the next page corresponding to the location of the name of the TAB bar
天地图坐标系转高德坐标系 WGS84转GCJ02
持续投入商品研发,叮咚买菜赢在了供应链投入上
【无标题】
2022 中国算力大会发布“创新先锋”优秀成果
静态/动态代理模式
.NET Static Code Weaving - Rougamo Release 1.1.0
thinkphp 常用技巧
Promise 解决阻塞式同步,将异步变为同步
Flask Framework Beginner-05-Command Management Manager and Database Use
的
;
的
;
.
、
和
are the source domain data
,
,
;
is the marginal distribution of the intermediate domain.在DDTL问题中:
;
;
.
;
Encode it to map it to a hidden representation;
Decode to reconstructx.
;
.
is an approximation to the original inputxthe reconstructed input.By minimizing the reconstruction error on all training data,即

、
∈ {0,1}:
:
和
Regularization term on ,通过将
和
Controls the importance of this regularization term.
:is the classification function that outputs the classification probability;
,其中0≤ z≤ 1;
用于选择
;Θ表示函数
selected to have low reconstruction error and low training loss.
