当前位置:网站首页>Variational graph auto-encoders (VGAE)
Variational graph auto-encoders (VGAE)
2022-06-28 19:21:00 【Lian Li o】
Contents
Variational graph auto-encoders (VGAE)
Graph Auto-Encoders (GAE)
Definitions
- Given an undirected graph G = ( V , E ) \mathcal G=(\mathcal V,\mathcal E) G=(V,E), N = ∣ V ∣ N=|\mathcal V| N=∣V∣ For the top points , A ∈ R N × N \boldsymbol A\in\R^{N\times N} A∈RN×N Is the adjacency matrix ( The diagonal element is 1), X ∈ R N × D \boldsymbol X\in\R^{N\times D} X∈RN×D Is the eigenvector of the node
Graph Auto-Encoders

- GAE Medium Encoder by GCN, It is responsible for getting the of each node from the adjacency matrix and node feature coding embedding vector z i z_i zi ( i = 1 , . . . , N i=1,...,N i=1,...,N), They form nodes embedding matrix Z ∈ R N × F \boldsymbol Z\in\R^{N\times F} Z∈RN×F
- GAE Medium Decoder For a simple inner product decoder, It is responsible for embedding vector Z \boldsymbol Z Z To reconstruct the adjacency matrix A ^ \hat \boldsymbol A A^. It works by calculating σ ( z i T z j ) \sigma(z_i^Tz_j) σ(ziTzj) To decide A ^ i j \hat \boldsymbol A_{ij} A^ij

A framework for unsupervised learning on graph-structured data
- GAE Introduce self encoder to process graph data , Sure Unsupervised learning based on graph data
Variational graph auto-encoders (VGAE)
- VGAE stay GAE On the basis of Variational self encoder (VAE) Thought , Yes latent space Regularization is applied to guarantee a regular latent space

- VGAE hypothesis Prior probability obey Standard normal distribution
p ( Z ) = ∏ i p ( z i ) = ∏ i N ( z i ∣ 0 , I ) p(\boldsymbol Z)=\prod_i p(z_i)=\prod_i \mathcal N(z_i|0,\boldsymbol I) p(Z)=i∏p(zi)=i∏N(zi∣0,I) - likelihood from Dot product The model gets

- Posterior probability from Variational reasoning Approximate result , The probability distribution family is a normal distribution in which the covariance matrix is a diagonal matrix
among , μ = GCN μ ( X , A ) \mu=\text{GCN}_\mu(\boldsymbol X,\boldsymbol A) μ=GCNμ(X,A) by GCN Output posterior probability distribution mean vector , log σ = GCN σ ( X , A ) \log\sigma=\text{GCN}_\sigma(\boldsymbol X,\boldsymbol A) logσ=GCNσ(X,A) by GCN Logarithm of the standard deviation of the output posterior probability distribution . GCN \text{GCN} GCN For a simple 2 layer GCN, Can be expressed as GCN ( X , A ) = A ~ RELU ( A ~ X W 0 ) W 1 \text{GCN}(\boldsymbol X,\boldsymbol A)=\tilde \boldsymbol A\text{RELU}(\tilde \boldsymbol A\boldsymbol X\boldsymbol W_0)\boldsymbol W_1 GCN(X,A)=A~RELU(A~XW0)W1, among W i \boldsymbol W_i Wi by MLP Weight matrices , A ~ = D − 1 2 A D − 1 2 \tilde \boldsymbol A=\boldsymbol D^{-\frac{1}{2}}\boldsymbol A\boldsymbol D^{-\frac{1}{2}} A~=D−21AD−21 Is the normalized adjacency matrix , D \boldsymbol D D Is the degree matrix ( A diagonal matrix , The diagonal element is the degree of each vertex ), Left multiplication D − 1 2 \boldsymbol D^{-\frac{1}{2}} D−21 Will make A \boldsymbol A A Of the i i i Row divided by node i i i The root of the degree , Take the right D − 1 2 \boldsymbol D^{-\frac{1}{2}} D−21 Will make A \boldsymbol A A Of the i i i Column divided by node i i i The root of the degree , therefore A ~ i j = A i j / ( D i i D j j ) \tilde\boldsymbol A_{ij}=\boldsymbol A_{ij}/(\sqrt{\boldsymbol D_{ii}\boldsymbol D_{jj}}) A~ij=Aij/(DiiDjj), So the adjacency matrix is normalized according to the degree . A ~ X = [ a ~ 1 T X . . . a ~ N T X ] \tilde \boldsymbol A\boldsymbol X=\begin{bmatrix} \tilde a_1^T\boldsymbol X\\...\\\tilde a_N^T\boldsymbol X\end{bmatrix} A~X=⎣⎡a~1TX...a~NTX⎦⎤ It is the information aggregation of nodes . GCN μ ( X , A ) \text{GCN}_\mu(\boldsymbol X,\boldsymbol A) GCNμ(X,A) and GCN σ ( X , A ) \text{GCN}_\sigma(\boldsymbol X,\boldsymbol A) GCNσ(X,A) Share the weight of the first layer W 0 \boldsymbol W_0 W0 - Derived from variational reasoning optimization problem To maximize the following formula :

References
- Kipf, Thomas N., and Max Welling. “Variational graph auto-encoders.” arXiv preprint arXiv:1611.07308 (2016).
- Wu, Zonghan, et al. “A comprehensive survey on graph neural networks.” IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.
- code: https://github.com/DaehanKim/vgae_pytorch
边栏推荐
- PostgreSQL database docker
- 视频压缩处理之ffmpeg用法
- 道路千万条,为什么这家创新存储公司会选这条?
- 泰山OFFICE技术讲座:WORD奇怪的字体高度
- Bayesian inference problem, MCMC and variational inference
- rancher增加/删除node节点
- F(x)构建方程 ,梯度下降求偏导,损失函数确定偏导调整,激活函数处理非线性问题
- 毕业设计-基于Unity的餐厅经营游戏的设计与开发(附源码、开题报告、论文、答辩PPT、演示视频,带数据库)
- Figure introduction to neural networks (GNN, GCN)
- Grafana draws the trend chart
猜你喜欢

大火的虚拟人在哪些产业开始发力?

About covariance and correlation

电脑如何检查驱动程序是否正常

I. The HR system is put on the enterprise wechat ISV to enhance the in-depth application of enterprise wechat in service chain retail and other industries

How to resolve kernel errors? Solution to kernel error of win11 system

Analysys analytics' 2022 China Banking privacy computing platform supplier strength matrix analysis' research activity was officially launched

OpenHarmony—内核对象事件之源码详解

Chunfeng power and Huawei work together to build a smart Park benchmark, and the future factory innovation will reach a new level

Business layer modification - reverse modification based on the existing framework

Question brushing analysis tool
随机推荐
秋招经验分享 | 银行笔面试该怎么准备
180.1. Log in continuously for n days (database)
Friends from Fujian, your old-age insurance is on the cloud!
Installing the nodejs environment
shell读取Json文件的值
I just bought the ADB MySQL service. Every time I do an operation, such as creating a table, this problem will pop up. What is the problem?
直播app系统源码,动态遇到视频时开始自动播放
Bayesian inference problem, MCMC and variational inference
SQL interview question: find the maximum number of consecutive login days
智能计算系统1 环境搭建
论文笔记:Universal Value Function Approximators
MongoDB系列之MongoDB工作原理简单介绍
MDM data analysis function description
Are there any regular and safe foreign exchange dealers in China?
Bayesian Reference problem, mCMC and variational reference
Opengauss kernel: analysis of SQL parsing process
C language file operation
Servlet的使用手把手教学(一)
C#连接数据库完成增删改查操作
Windows 64位下载安装My SQL