当前位置:网站首页>Machine learning practice - neural network-21
Machine learning practice - neural network-21
2022-07-28 12:49:00 【gemoumou】
Machine learning practice - neural network - Handwritten digit recognition project
# pip install scikit-learn --upgrade
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report,confusion_matrix
digits = load_digits()# Load data
x_data = digits.data # data
y_data = digits.target # label
# Standardization
scaler = StandardScaler()
x_data = scaler.fit_transform(x_data)
x_train,x_test,y_train,y_test = train_test_split(x_data,y_data) # Split data 1/4 For test data ,3/4 For training data
mlp = MLPClassifier(hidden_layer_sizes=(100,50) ,max_iter=500)
mlp.fit(x_train,y_train )

predictions = mlp.predict(x_test)

print(confusion_matrix(y_test,predictions))

Machine learning practice - neural network - Wine classification


import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report,confusion_matrix
# Load data
data = np.genfromtxt("wine_data.csv", delimiter=",")
x_data = data[:,1:]
y_data = data[:,0]
print(x_data.shape)
print(y_data.shape)

# Data segmentation
x_train, x_test, y_train, y_test = train_test_split(x_data, y_data)
# Data standardization
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)
# modeling
mlp = MLPClassifier(hidden_layer_sizes=(100,50),max_iter=500)
# Training
mlp.fit(x_train,y_train)

# assessment
predictions = mlp.predict(x_test)
print(classification_report(y_test,predictions))

print(confusion_matrix(y_test,predictions))

边栏推荐
猜你喜欢
随机推荐
Initialization examples of several modes of mma8452q
输入字符串,内有数字和非字符数组,例如A123x456将其中连续的数字作为一个整数,依次存放到一个数组中,如123放到a[0],456放到a[1],并输出a这些数
十三. 实战——常用依赖的作用
BA autoboot plug-in of uniapp application boot
Distributed session solution
大模型哪家强?OpenBMB发布BMList给你答案!
sqli-labs(less-8)
20220728 common methods of object class
GMT安装与使用
机器学习基础-支持向量机 SVM-17
恋爱男女十禁
奥浦迈生物通过注册:半年营收1.47亿 国寿成达与达晨是股东
非标自动化设备企业如何借助ERP系统,做好产品质量管理?
微创电生理通过注册:年营收1.9亿 微创批量生产上市企业
快速读入
Using dependent packages to directly implement paging and SQL statements
C# static的用法详解
Did kafaka lose the message
Sliding Window
机器学习实战-神经网络-21








