当前位置:网站首页>【PaddlePaddle】 PaddleDetection 人脸识别 自定义数据集
【PaddlePaddle】 PaddleDetection 人脸识别 自定义数据集
2022-07-05 17:50:00 【mtl1994】
【PaddlePaddle】 PaddleDetection 人脸识别 自定义数据集
使用paddleDetection实现人脸识别
文章目录
# 前言
使用paddleDetection人脸识别
简介
PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。
PaddleDetection模块化地实现了多种主流目标检测算法,提供了丰富的数据增强策略、网络模块组件(如骨干网络)、损失函数等,并集成了模型压缩和跨平台高性能部署能力。
经过长时间产业实践打磨,PaddleDetection已拥有顺畅、卓越的使用体验,被工业质检、遥感图像检测、无人巡检、新零售、互联网、科研等十多个行业的开发者广泛应用。
特性
- 模型丰富: 包含目标检测、实例分割、人脸检测等100+个预训练模型,涵盖多种全球竞赛冠军方案
- 使用简洁:模块化设计,解耦各个网络组件,开发者轻松搭建、试用各种检测模型及优化策略,快速得到高性能、定制化的算法。
- 端到端打通: 从数据增强、组网、训练、压缩、部署端到端打通,并完备支持云端/边缘端多架构、多设备部署。
- 高性能: 基于飞桨的高性能内核,模型训练速度及显存占用优势明显。支持FP16训练, 支持多机训练。
一、数据集制作
1.收集数据
从本地摄像头收集运行以下代码,也可以从其他地方获取
# -*- coding: utf-8 -*-
####### 本地运行!!!!!!!!!
import cv2
import os
path = "./pictures/" # 图片保存路径
if not os.path.exists(path):
os.makedirs(path)
cap = cv2.VideoCapture(0)
i = 0
while (1):
ret, frame = cap.read()
k = cv2.waitKey(1)
if k == 27:
break
elif k == ord('s'):
cv2.imwrite(path + str(i) + '.jpg', frame)
print("save" + str(i) + ".jpg")
i += 1
cv2.imshow("capture", frame)
cap.release()
cv2.destroyAllWindows()
2.标注
打开labelimg
1.打开图片文件夹
2.点击change_save_dir 选择 xml保存路径
3.标注
二、下载
#下载飞桨
https://www.paddlepaddle.org.cn/
#下载paddleDetection
# pip安装paddledet
pip install paddledet==2.1.0 -i https://mirror.baidu.com/pypi/simple
# 下载使用源码中的配置文件和代码示例
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection
# 安装其他依赖
pip install -r requirements.txt
三、训练
1.修改配置文件
#使用 ssd_mobilenet
#vim configs/ssd/ssd_mobilenet_v1_voc.yml
#主要修改数据集位置
TrainReader:
inputs_def:
image_shape: [3, 300, 300]
fields: ['image', 'gt_bbox', 'gt_class']
dataset:
!VOCDataSet
anno_path: trainval.txt
dataset_dir: /home/aiuser/mtl/data/face_demo/VOCdevkit
EvalReader:
inputs_def:
image_shape: [3, 300, 300]
fields: ['image', 'gt_bbox', 'gt_class', 'im_shape', 'im_id', 'is_difficult']
dataset:
!VOCDataSet
dataset_dir: /home/aiuser/mtl/data/face_demo/VOCdevkit
anno_path: val.txt
TestReader:
inputs_def:
image_shape: [3,300,300]
fields: ['image', 'im_id', 'im_shape']
dataset:
!ImageFolder
dataset_dir: /home/aiuser/mtl/data/face_demo/VOCdevkit
anno_path: label_list.txt
完整配置文件
architecture: SSD
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_coco_pretrained.tar
use_gpu: true
max_iters: 2800
snapshot_iter: 2000
log_iter: 1
metric: VOC
map_type: 11point
save_dir: output
weights: output/ssd_mobilenet_v1_voc/model_final
# 20(label_class) + 1(background)
num_classes: 25
SSD:
backbone: MobileNet
multi_box_head: MultiBoxHead
output_decoder:
background_label: 0
keep_top_k: 200
nms_eta: 1.0
nms_threshold: 0.45
nms_top_k: 400
score_threshold: 0.01
MobileNet:
norm_decay: 0.
conv_group_scale: 1
conv_learning_rate: 0.1
extra_block_filters: [[256, 512], [128, 256], [128, 256], [64, 128]]
with_extra_blocks: true
MultiBoxHead:
aspect_ratios: [[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]]
base_size: 300
flip: true
max_ratio: 90
max_sizes: [[], 150.0, 195.0, 240.0, 285.0, 300.0]
min_ratio: 20
min_sizes: [60.0, 105.0, 150.0, 195.0, 240.0, 285.0]
offset: 0.5
LearningRate:
schedulers:
- !PiecewiseDecay
milestones: [10000, 15000, 20000, 25000]
values: [0.001, 0.0005, 0.00025, 0.0001, 0.00001]
OptimizerBuilder:
optimizer:
momentum: 0.0
type: RMSPropOptimizer
regularizer:
factor: 0.00005
type: L2
TrainReader:
inputs_def:
image_shape: [3, 300, 300]
fields: ['image', 'gt_bbox', 'gt_class']
dataset:
!VOCDataSet
anno_path: trainval.txt
dataset_dir: /home/aiuser/mtl/data/face_demo/VOCdevkit
use_default_label: false
sample_transforms:
- !DecodeImage
to_rgb: true
- !RandomDistort
brightness_lower: 0.875
brightness_upper: 1.125
is_order: true
- !RandomExpand
fill_value: [127.5, 127.5, 127.5]
- !RandomCrop
allow_no_crop: false
- !NormalizeBox {}
- !ResizeImage
interp: 1
target_size: 300
use_cv2: false
- !RandomFlipImage
is_normalized: true
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [127.5, 127.5, 127.5]
std: [127.502231, 127.502231, 127.502231]
batch_size: 4
shuffle: true
drop_last: true
worker_num: 8
bufsize: 16
use_process: true
EvalReader:
inputs_def:
image_shape: [3, 300, 300]
fields: ['image', 'gt_bbox', 'gt_class', 'im_shape', 'im_id', 'is_difficult']
dataset:
!VOCDataSet
dataset_dir: /home/aiuser/mtl/data/face_demo/VOCdevkit
anno_path: val.txt
use_default_label: false
sample_transforms:
- !DecodeImage
to_rgb: true
- !NormalizeBox {}
- !ResizeImage
interp: 1
target_size: 300
use_cv2: false
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [127.5, 127.5, 127.5]
std: [127.502231, 127.502231, 127.502231]
batch_size: 4
worker_num: 8
bufsize: 16
use_process: false
TestReader:
inputs_def:
image_shape: [3,300,300]
fields: ['image', 'im_id', 'im_shape']
dataset:
!ImageFolder
dataset_dir: /home/aiuser/mtl/data/face_demo/VOCdevkit
anno_path: label_list.txt
use_default_label: false
sample_transforms:
- !DecodeImage
to_rgb: true
- !ResizeImage
interp: 1
max_size: 0
target_size: 300
use_cv2: true
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [127.5, 127.5, 127.5]
std: [127.502231, 127.502231, 127.502231]
batch_size: 1
2.开始训练
python -u tools/train.py -c configs/ssd/ssd_mobilenet_v1_voc.yml -o --eval
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qhhnrgL3-1656931184790)(C:\Users\e9\AppData\Roaming\Typora\typora-user-images\image-20210712141658919.png)]
3.导出模型
python tools/export_model.py -c configs/ssd/ssd_mobilenet_v1_voc.yml --output_dir=./inference_model
四、使用
python -u deploy/python/infer.py --model_dir D:/Paddle/PaddleDetection/PaddleDetection/output/ssd_mobilenet_v1_voc/ssd_mobilenet_v1_voc
nfigs/ssd/ssd_mobilenet_v1_voc.yml --output_dir=./inference_model ```
四、使用
python -u deploy/python/infer.py --model_dir D:/Paddle/PaddleDetection/PaddleDetection/output/ssd_mobilenet_v1_voc/ssd_mobilenet_v1_voc
# 总结
边栏推荐
- Simple query cost estimation
- Sophon CE社区版上线,免费Get轻量易用、高效智能的数据分析工具
- QT console printout
- Cartoon: looking for the best time to buy and sell stocks
- How to modify MySQL fields as self growing fields
- Binder开辟线程数过多导致主线程ANR异常
- Leetcode daily question: merge two ordered arrays
- Why is February 28 in the Gregorian calendar
- QT控制台打印输出
- EasyCVR平台通过接口编辑通道出现报错“ID不能为空”,是什么原因?
猜你喜欢

Daily exercise: a series of dates

Sophon KG升级3.1:打破数据间壁垒,解放企业生产力

记一次使用Windbg分析内存“泄漏”的案例

Matlab reference

GFS distributed file system

寻找第k小元素 前k小元素 select_k

Redis基础

Abnormal recovery of virtual machine Oracle -- Xi Fenfei
![[JMeter] advanced writing method of JMeter script: all variables, parameters (parameters can be configured by Jenkins), functions, etc. in the interface automation script realize the complete business](/img/a6/aa0b8d30913dc64f3c0cd891528c40.png)
[JMeter] advanced writing method of JMeter script: all variables, parameters (parameters can be configured by Jenkins), functions, etc. in the interface automation script realize the complete business

Cmake tutorial step1 (basic starting point)
随机推荐
Cmake tutorial Step2 (add Library)
「运维有小邓」用于云应用程序的单点登录解决方案
How awesome is the architecture of "12306"?
rsync
Cmake tutorial Step3 (requirements for adding libraries)
Sophon AutoCV:助力AI工业化生产,实现视觉智能感知
数值计算方法 Chapter8. 常微分方程的数值解
Why is February 28 in the Gregorian calendar
隐私计算助力数据的安全流通与共享
Vulnerability recurrence - 48. Command injection in airflow DAG (cve-2020-11978)
Cmake tutorial step5 (add system self-test)
EasyCVR平台通过接口编辑通道出现报错“ID不能为空”,是什么原因?
最大人工岛[如何让一个连通分量的所有节点都记录总节点数?+给连通分量编号]
Interpretation: how to deal with the current security problems faced by the Internet of things?
Disabling and enabling inspections pycharm
Unicode processing in response of flash interface
Sophon base 3.1 launched mlops function to provide wings for the operation of enterprise AI capabilities
tkinter窗口预加载
Redis Foundation
Server configuration jupyter environment