当前位置:网站首页>How to save the trained neural network model (pytorch version)
How to save the trained neural network model (pytorch version)
2022-07-05 17:33:00 【Chasing young feather】
One 、 Save and load models
After training the model with data, an ideal model is obtained , But in practical application, it is impossible to train first and then use , So you have to save the trained model first , Then load it when you need it and use it directly . The essence of a model is a pile of parameters stored in some structure , So there are two ways to save , One way is to save the whole model directly , Then directly load the whole model , But this will consume more memory ; The other is to save only the parameters of the model , When used later, create a new model with the same structure , Then import the saved parameters into the new model .
Two 、 Implementation methods of two cases
(1) Save only the model parameter dictionary ( recommend )
# preservation
torch.save(the_model.state_dict(), PATH)
# Read
the_model = TheModelClass(*args, **kwargs)
the_model.load_state_dict(torch.load(PATH))
(2) Save the entire model
# preservation
torch.save(the_model, PATH)
# Read
the_model = torch.load(PATH)
3、 ... and 、 Save only model parameters ( Example )
pytorch Will put the parameters of the model in a dictionary , And all we have to do is save this dictionary , Then call .
For example, design a single layer LSTM Network of , And then training , After training, save the parameter Dictionary of the model , Save as... Under the same folder rnn.pt file :
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, 1)
def forward(self, x):
# Set initial states
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# 2 for bidirection
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# Forward propagate LSTM
out, _ = self.lstm(x, (h0, c0))
# out: tensor of shape (batch_size, seq_length, hidden_size*2)
out = self.fc(out)
return out
rnn = LSTM(input_size=1, hidden_size=10, num_layers=2).to(device)
# optimize all cnn parameters
optimizer = torch.optim.Adam(rnn.parameters(), lr=0.001)
# the target label is not one-hotted
loss_func = nn.MSELoss()
for epoch in range(1000):
output = rnn(train_tensor) # cnn output`
loss = loss_func(output, train_labels_tensor) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
output_sum = output
# Save the model
torch.save(rnn.state_dict(), 'rnn.pt')
After saving, use the trained model to process the data :
# Test the saved model
m_state_dict = torch.load('rnn.pt')
new_m = LSTM(input_size=1, hidden_size=10, num_layers=2).to(device)
new_m.load_state_dict(m_state_dict)
predict = new_m(test_tensor)
Here's an explanation , When you save the model rnn.state_dict() Express rnn The parameter Dictionary of this model , When testing the saved model, first load the parameter Dictionary m_state_dict = torch.load('rnn.pt')
;
Then instantiate one LSTM Antithetic image , Here, we need to ensure that the parameters passed in are consistent with the instantiation rnn Is the same as when the object is passed in , That is, the structure is the same new_m = LSTM(input_size=1, hidden_size=10, num_layers=2).to(device)
;
Here are the parameters loaded before passing in the new model new_m.load_state_dict(m_state_dict)
;
Finally, we can use this model to process the data predict = new_m(test_tensor)
Four 、 Save the whole model ( Example )
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, 1)
def forward(self, x):
# Set initial states
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) # 2 for bidirection
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# Forward propagate LSTM
out, _ = self.lstm(x, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size*2)
# print("output_in=", out.shape)
# print("fc_in_shape=", out[:, -1, :].shape)
# Decode the hidden state of the last time step
# out = torch.cat((out[:, 0, :], out[-1, :, :]), axis=0)
# out = self.fc(out[:, -1, :]) # Take the last column as out
out = self.fc(out)
return out
rnn = LSTM(input_size=1, hidden_size=10, num_layers=2).to(device)
print(rnn)
optimizer = torch.optim.Adam(rnn.parameters(), lr=0.001) # optimize all cnn parameters
loss_func = nn.MSELoss() # the target label is not one-hotted
for epoch in range(1000):
output = rnn(train_tensor) # cnn output`
loss = loss_func(output, train_labels_tensor) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
output_sum = output
# Save the model
torch.save(rnn, 'rnn1.pt')
After saving, use the trained model to process the data :
new_m = torch.load('rnn1.pt')
predict = new_m(test_tensor)
边栏推荐
- MySQL queries the latest qualified data rows
- 漫画:如何实现大整数相乘?(下)
- Zhang Ping'an: accélérer l'innovation numérique dans le cloud et construire conjointement un écosystème industriel intelligent
- ICML 2022 | meta proposes a robust multi-objective Bayesian optimization method to effectively deal with input noise
- Humi analysis: the integrated application of industrial Internet identity analysis and enterprise information system
- 云安全日报220705:红帽PHP解释器发现执行任意代码漏洞,需要尽快升级
- Read the history of it development in one breath
- Three traversal methods of binary tree
- 張平安:加快雲上數字創新,共建產業智慧生態
- 排错-关于clion not found visual studio 的问题
猜你喜欢
Database design in multi tenant mode
MySQL之知识点(六)
查看自己电脑连接过的WiFi密码
How to write a full score project document | acquisition technology
漏洞复现----48、Airflow dag中的命令注入(CVE-2020-11978)
基于Redis实现延时队列的优化方案小结
What are the precautions for MySQL group by
Rider 设置选中单词侧边高亮,去除警告建议高亮
ICML 2022 | Meta propose une méthode robuste d'optimisation bayésienne Multi - objectifs pour faire face efficacement au bruit d'entrée
Oracle Recovery Tools ----oracle数据库恢复利器
随机推荐
Cartoon: a bloody case caused by a math problem
Cartoon: looking for the k-th element of an unordered array (Revised)
华为云云原生容器综合竞争力,中国第一!
Design of electronic clock based on 51 single chip microcomputer
Cartoon: how to multiply large integers? (integrated version)
mysql中取出json字段的小技巧
2022 information system management engineer examination outline
Embedded-c Language-5
独立开发,不失为程序员的一条出路
Cartoon: how to multiply large integers? (I) revised version
Three traversal methods of binary tree
这个17岁的黑客天才,破解了第一代iPhone!
企业数字化发展中的六个安全陋习,每一个都很危险!
The second day of learning C language for Asian people
一口气读懂 IT发展史
Function sub file writing
Learn about MySQL transaction isolation level
Example tutorial of SQL deduplication
mongodb(快速上手)(一)
得知女儿被猥亵,35岁男子将对方打至轻伤二级,法院作出不起诉决定