当前位置:网站首页>mysql index notes
mysql index notes
2022-08-04 04:07:00 【wuhui2100】
1、二叉树:That is when the index is increasing,Can lead to a structure for list form(缺点,mysql不推荐)
2、红黑数:完全平衡二叉树,When data volume is very big, lead to highh很高,Still affect the query efficiency(mysql不推荐)
3、B-tree:
1)、叶子节点具有相同的深度
2)、All the index of the element is not repeat
3)、Node data index increasing from left to right order(But not all the leaf node list to,Because each node of the index is not repeat)
注:Blank node under the said pointing to a disk file address(6Byte)
4、B+tree :每个非叶子节点(页)默认大小为16KB,mysqlInitialization will not a leaf node index to the memory,Again after traversal to the leaf node corresponding data loaded into memory and quickly
1)、非叶子节点不存储data数据,Store only the corresponding index,So the leaf node can store more index
2)、Leaf node contains all the indexes of field
3)、叶子节点用指针连接,Range queries faster
注:Blank node under the said pointing to a disk file address(6Byte)
5、存储引擎
The storage engine is described the data table
6、MyISAM索引引擎
myisamTable storage consists of three files,即:
XX_.frm文件:Your sentence structure
XX_.MYI文件:Store the current corresponding indexes in the table
XX_.MYD文件:To store all the data in the current table
The index files and data files is the separation of(非聚集)
7、Innodb存储引擎
innodbRecommend a primary key:主键索引也是聚簇索引,B+Tree will be according to the size of primary key field value comparison to establish order index,All forms of recommended on the primary key
非主键索引:innodbUnder the primary key index will depend on the primary key index,Is not the primary key index of leaf node to storedataIs corresponding to the primary key index keys(Again with the primary key to the primary key index to find corresponding index of all the data)
不推荐使用UUID:因为innodbItself the primary key index to compare the size of the corresponding value index,In this process by using digital size than the size of the string comparison is faster;另一个原因是使用UUIDPrompt index node split(Build a harder,耗费性能)
8、What is a clustered index and non clustered index
聚集索引:B + Tree leaf node contains the complete data record
非聚簇索引:Leaf nodes in the index and data file is separate,And first when searching, respectively to find the corresponding index,Then data store the disk address of the corresponding node to find
9、hash索引
inodbThe default index structure asB+树,但是对应hashThe index is stored as a:
hashTable is based on the data and linked list storage structure,Array part after their ownhash算法算出对应的hash值,And then the corresponding element value(Index and index in the disk address)放入到链表中
10、联合索引(多字段索引)
Joint index higher than multiple single field index query efficiency,Multiple fields according to the left in order to order index(When all fields equal leaf nodedataData storage of the primary key of the index value to the primary key index again get all the values of the corresponding)
最左前缀原则:Do not skip the indexes used in front of the back of the indexes(即a and c 也是不走索引的,Pay attention to the combination index andwhere After the order is no relationship,Which meet the most left prefix of the data is just ok,不用考虑where 顺序,例如where c and b and a是走索引的)
注:United there is the primary key index in the index table,No matter how the sorting will go the primary key index
Joint index is divided into:
普通联合索引:数据可以重复
唯一联合索引:数据不能重复
语法不同,普通联合索引 以create index ……
开头,而 唯一联合索引 以create unique index ……
开头
create index 索引名 on 表名(‘字段1’,‘字段2’)
create unique index 索引名 on 表名(‘字段1’,‘字段2’)
查看索引的语法:show index from 表名
删除索引语法: drop index 索引名 on 表名; 或者采用:alter table 表名 drop index 索引名
11、innodb数据结构(B+树结构)
A leaf node of the data storage structure below:
The size of a page default as16kb,More than the add page;一个节点就是一页(page),Not a leaf node to store the value of the corresponding page directory as;A node page directory is in the user data area according to the primary key to group,The minimum storage after primary key grouping
注:When inserting data in ascending order according to the primary key to update all the corresponding node data(所有不建议使用UUID作为主键)
Multiple nodes together
最后的B+树在MySQLIs the following structure diagram:
B+A pointer to a pointer is two-way tree on a leaf node(方便范围查找)
12、innodb中buffer pool缓存池
buffer pool一块内存区域,当数据库操作数据的时候,把硬盘上的数据加载到buffer pool,不直接和硬盘打交道,操作的是buffer pool里面的数据 ;
数据库的增删改查都是在buffer pool上进行,和undo log/redo log/redo log buffer/binlog一起使用,后续会把数据刷到硬盘上
默认大小为128M
修改buffer pool缓存池大小( SET GLOBAL innodb_buffer_pool_size= ; )
缓冲池(buffer pool)Is a kind of mechanism to reduce disk access
缓冲池通常以页(page)为单位缓存数据;
缓冲池的常见管理算法是LRU(最近最少使用)
InnoDB对普通LRU进行了优化:
The buffer pool is divided into new generation(Hot data area)和老生代(冷数据区),入缓冲池的页,优先进入老生代,页被访问,才进入新生代,以Solve the problem of pre-reading failure ;
页被访问,且在老生代停留时间超过配置阈值的,才进入新生代,以To solve the batch data access,A large amount of heat elimination problem
13、redo log(默认48M)
Buffer pool data persistence are generally two kinds of:
1、第一种(效率低)
update修改了buffer pool中的数据,此时将buffer poolModified to dirty pages
Modification of page data in disk
最后提示修改成功
2、第二种(速度快)
update修改了buffer pool中的数据,此时将buffer poolModified to dirty pages
生成一个redo log 然后将数据存到 log buffer 内存中
redo log进行持久化(事务提交的时候)
innodbProvides three persistent way,默认为1
为2时会将log bufferThe data submitted by the operating system buffer pool(Operating System Cache )
The execution of a transaction will generate rawbinlog、redolog
提示成功(当mysql服务挂了,Restart will be againredo logThe corresponding page in comparing with the disk update)
redo logThe file for the two files for cycle,当所有的redo logFile is reached maximum storage space when触发检查点;检查redo log中文件与buffer poolCache pages in the data is the same,First the buffer pool in the corresponding page data to disk(In order to reduce the trigger checkpoints,可以将redo log文件调大)
14、redo log、binlog、 undo log在mysql中的操作
innodbGeneral in the update data, the following:
修改buffer poolThe inside of the data for the dirty pages
update语句—>生成一个redo log —>再走log buffer(log The cache way corresponding rule)
log The cache way corresponding rule(0,1,2规则)
redo log持久化(当事务提交的时候)
redologStorage is the cached page one to modify data in the corresponding address in the disk(Recovery block)
binlog 持久化(这个是mysqlPersistence is notinnodb的,Commonly used in master-slave log)
binlogRecords are somesql语句(恢复速度慢)
undo log 即反向操作 (When the operation fails to roll backbuffer pool缓存区)
性能调优时:允许情况下buffer pool与redo log文件越大越好
15、Depots in the database table what scenario and means?
Database optimization is commonly:
1、换数据库
2、sql语句优化、字段优化、索引优化
3、读写分离
The main table to write,Read from the table;(Read more to write less table)
When the main table usebinlogThe diary to update from the table,Network delays,Query is mandatory routing can be used
Separation or depots table implementation, speaking, reading and writing are using two ways:基于proxy代理模式(atlasMandatory routing solutionbinlogSynchronization delay forced routing go main library ),jbdc增强
4、分库分表
Depots table is more of the relational database data storage and access mechanisms complement,而不是颠覆
1、垂直分库
Will a full measure data according to different business split,Different business into different databases
2、垂直分表
Will often use the field in a large table into a table,Don't use often broken down into another table
总结:
1、垂直分库分表:
1、每个库(表)Structure is different
2、每个库(表)数据(至少有一列)是一样的
3、每个库(表)Full amount of the data and sets the data
优点:拆分后业务清晰(Specialized library according to the business),数据维护简单,According to the different business on different machines
缺点:If a single table data,Read and write pressure is still a lot
In some business to determine,或者限制;That is to say, a business can affect the bottleneck of the database(性能问题)
部分业务无法关联join,只能通过java接口去调用,提高开发难度
3、水平分库
According to the corresponding data of modulus insert or visit the corresponding data(例如useridAfter the modulus in different libraries in)
4、水平分表
According to the corresponding data in the table modulus insert or visit the corresponding data(例如useridAfter the modulus in different table)
总结:
水平分表:
1、每个库(表)结构都一样
2、每个库(表)的数据都不一样
3、After the segmentation of table structure is the same,程序改造较小
优点:
单库(表)The data in a certain amount of reducing,有助于性能提高
Improve the system stability and load capacity
切分的表结构相同,Program changes smaller
缺点:
Data capacity is very difficult(Amount of data to all database of zero point,Need new library is due to the modulus access data again, Will lead to all the data in a database table need to change before migration according to the corresponding new modulus)
拆分规则很难抽象出来
Shard transaction consistency problem part of the business can'tjoin,只能通过java程序去调用
总结:Whether it's depots table vertical or horizontal depots table can trigger:
1、ACID分布式事务
2、增加维护成本
3、跨库查询问题
4、Determine the distributed globally uniqueID
16、Depots table intermediate key
1、proxy代理层(性能不高,But can cross language)
mycat、atlas、mysql-porxy(mysql自带)
2、jdbc应用层(性能要高)
shardingsphere、TTDL
17、Redis与mysql怎么保证数据一致性
1、先更新Mysql,再更新Redis;如果Redis失败了,May still don't agree
2、先删除Redis缓存数据,再更新Mysql,Query again add data to theRedis缓存中;This scheme solves the method1,But in the case of high concurrency performance is low,But still there will be a data inconsistency problem;比如线程1删除了Redis缓存数据,正在更新Mysql,At this time another thread to query will used data query toRedis中
3、延时删除,步骤是:先删除Redis中的数据,再更新Mysql,延迟几百毫秒再删除Redis缓存数据,这样就算在更新Mysql时,有其他线程读了Mysql,把老数据读到Redis中,那么也会被删除掉,从而保证数据一致性
18、ExplainWhat statement results in various fields, respectively
19、索引覆盖
索引覆盖就是一个SQL在执行时,Can use the index to quickly query,并且此SQLHave to query the corresponding fields in the current index of the field are included in the,那么就表示此SQLWalk the index don't have to come back,The required fields in the current index of leaf nodes are,可以作为结果返回.
20、innodb是如何实现事务的
innodb通过buffer pool、redo log、undo log、logBuffer来实现事务,以update为例:
1、innodb在收到一个update语句后,会先根据条件找到数据所在的页,And to save the page as abuffer pool中
2、执行update语句,修改Buffer pool中的数据(内存中的数据)
3、针对Update语句生成redo log日志对象,并存到LogBuffer中
4、针对update语句生成undo log日志,用于事务回滚
5、如果事务提交,则把RedoLog对象进行持久化,Follow-up and other mechanisms will beBuffer Pool中所修改的数据页持久化到磁盘中
6、如果事务回滚,则利用undo log日志进行回滚
21、Mysql锁有哪些,如何理解
按锁粒度分类:
1、行锁:锁某行数据,锁粒度最小,并发度高
2、表锁:锁整张表,锁粒度最大,并发度低
3、间隙锁(页锁):锁的是一个区间(Between table locks and line number)
还可以分为:
1.共享锁:也就是读锁,A transaction to a line read lock,Other things can also be read,但是不能写
2.排它锁:也就是写锁,A transaction to a line write lock,Other matters will not be able to read,也不能写
还可以分为:
1、乐观锁:并不会真正去锁某行记录,而是通过一个版本号来实现
2、悲观锁:The above said row lock、表锁等都是悲观锁(Think very pessimistic,Each transaction to the need to lock the operation)
Using the locking mechanism in transaction isolation implementation solve the phantom read.
22、Mysql慢查询该如何优化
1、检查是否走了索引,如果没有则优化SQL利用索引
2、Check whether the use of index is the optimal index
3、Check whether the query field must be,If find out redundant field
4、Check whether the data in the table too much,Whether should be depots table
5、Check the database instance his machine performance configuration,是否太低,是否可以适当增加资源
23、mysql有哪几种数据存储引擎
使用命令:show engines
边栏推荐
猜你喜欢
随机推荐
复现20字符短域名绕过
42. 接雨水
深度学习之 10 卷积神经网络3
Y86. Chapter iv Prometheus giant monitoring system and the actual combat, Prometheus storage (17)
mq应用场景介绍
Enterprise live broadcast is on the rise: Witnessing focused products, micro-like embracing ecology
类如何只能静态分配和只能动态分配
SQL interview Questions
【机器学习】21天挑战赛学习笔记(一)
仿牛客论坛项目梳理
【项目实现】Boost搜索引擎
学会iframe并用其解决跨域问题
PHP高级开发案例(1):使用MYSQL语句跨表查询无法导出全部记录的解决方案
缓存穿透、缓存击穿、缓存雪崩以及解决方案
new Date converts strings into date formats Compatible with IE, how ie8 converts strings into date formats through new Date, how to replace strings in js, and explain the replace() method in detail
七夕节,我用代码制作了表白信封
Shell 函数
拿捏JVM性能优化(自己笔记版本)
Reproduce 20-character short domain name bypass
Learn iframes and use them to solve cross-domain problems