当前位置:网站首页>The solution to the inconsistency between the PaddleX deployment inference model and the GUI interface test results
The solution to the inconsistency between the PaddleX deployment inference model and the GUI interface test results
2022-08-01 05:09:00 【I had free and unfettered Kurt】
Problem description:
Recently, when PaddleX is used for target detection and FasterRCNN is used, the exported inference_model is deployed to windows and the result calculated locally is wrong.
The following is the code for model deployment
model = pdx.deploy.Predictor('F:\panyutong\PaddleX\model\model5\inference_model\inference_model')image_name = 'F:\panyutong\LG\\test\\test\IMAGES\\1404.jpg'predicts = model.predict(image_name)
The predicts test and output are incorrect:
1. The coordinates are negative
2. The confidence level is greater than 1
3. The predicted category exceeds the number of labels
Workaround:
The prediction result using GPU is correct, modify the code as
model = pdx.deploy.Predictor('F:\panyutong\PaddleX\model\model5\inference_model\inference_model',use_gpu=True)image_name = 'F:\panyutong\LG\\test\\test\IMAGES\\1404.jpg'predicts = model.predict(image_name)
New question:
Error after using GPU: Process has ended, exit code -1073740791 (0xC0000409)
Workaround:
I am using pycharm, select edit configuration, check the analog output console (screenshots from other blogs are quoted here)
This will output the error message:
Could not locate zlibwapi.dll. Please make sure it is in your library path
It turns out that some resources are missing
Link: https://pan.baidu.com/s/1JE4D5NQ0MfRkZdAEVQZHVQ
Extraction code: t4uv
The lib file is placed in C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\lib
Put the dll file in C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin
Reference blog: Resource acquisition
Run the program again after adding, the result is correct!
边栏推荐
- PAT class B 1001 (3n+1) conjecture
- vim配置+ctag像source insight一样方便阅读代码
- Selenium:元素判断
- 挑战52天背完小猪佩奇(第01天)
- typescript20-接口
- y83.第四章 Prometheus大厂监控体系及实战 -- prometheus告警机制进阶(十四)
- The sword refers to Offer 68 - I. Nearest Common Ancestor of Binary Search Trees
- 万字逐行解析与实现Transformer,并进行德译英实战(三)
- 华为Android开发面试后得出的面试秘诀
- 干货!如何使用仪表构造SRv6-TE性能测试环境
猜你喜欢
HJS-DE1/2时间继电器
Pyspark Machine Learning: Vectors and Common Operations
MySQL-数据定义语言-DDLdatebase define language
【目标检测】YOLOv7理论简介+实践测试
剑指 Offer 68 - II. 二叉树的最近公共祖先
Check控件
PAT serie b write the number 1002
y83. Chapter 4 Prometheus Factory Monitoring System and Actual Combat -- Advanced Prometheus Alarm Mechanism (14)
USB3.0:VL817Q7-C0的LAYOUT指南(三)
数组问题之《两数之和》以及《三数之和 》
随机推荐
safari浏览器怎么导入书签
Selenium:操作Cookie
Robot_Framework:常用内置关键字
Excel record of integer programming optimization model to solve the problem
(2022 Niu Ke Duo School IV) K-NIO's Sword (Thinking)
风险策略调优中重要的三步分析法
请问表格储存中用sql只能查询到主键列,ots sql非主键不支持吗?
Selenium:浏览器操作
(2022 Nioke Duo School IV) H-Wall Builder II (Thinking)
typescript21-接口和类型别名的对比
小心你的字典和样板代码
(2022牛客多校四)K-NIO‘s Sword(思维)
MySQL实践总结-
typescript28 - value of enumeration type and data enumeration
Optional parameters typescript19 - object
剑指 Offer 68 - I. 二叉搜索树的最近公共祖先
李迟2022年7月工作生活总结
PaddleX部署推理模型和GUI界面测试结果不一致的解决方法
MySQL-数据操作-分组查询-连接查询-子查询-分页查询-联合查询
数组问题之《两数之和》以及《三数之和 》