当前位置:网站首页>Anomaly-Transformer (ICLR 2022 Spotlight)复现过程及问题
Anomaly-Transformer (ICLR 2022 Spotlight)复现过程及问题
2022-07-01 22:56:00 【理心炼丹】
作者推荐的是 python3.6,pytorch 1.4
1. 环境修改
尝试安装 pytorch 1.4 运行,但是代码会卡住,并且没有报错。定位错误在:Anomaly-Transformer/model/attn.py
self.distances = torch.zeros((window_size, window_size)).cuda().cuda() 卡住:原因是 安装的 pytorch 1.4 对应的CUDA 版本为 10.x,算力是 sm_86,CUDA 10.x 最高支持到 sm_75,因此需要CUDA 11.x来支持sm_8.x。
因此升级 我的环境 python3.7, pytorch 1.12 , 显卡3080Ti, CUDA 版本:11.3
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch再次运行训练脚本,又报错:
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [512, 25]], which is output 0 of AsStridedBackward0, is at version 2; expected version 1 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
解决:注释掉Anomaly-Transformer/solver.py 的第一个 .step():
# Minimax strategy
loss1.backward(retain_graph=True)
# self.optimizer.step()
loss2.backward()
self.optimizer.step()参考:Why the optimizer.step() write twice? · Issue #8 · thuml/Anomaly-Transformer · GitHub
2. 恭喜! 成功运行!
python main.py --anormly_ratio 1 --num_epochs 3 --batch_size 128 --mode train --dataset PSM --data_path dataset/PSM --input_c 25 --output_c 25------------ Options -------------
anormly_ratio: 1.0
batch_size: 128
data_path: dataset/PSM
dataset: PSM
input_c: 25
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 25
pretrained_model: None
win_size: 100
======================TEST MODE======================
/opt/conda/lib/python3.7/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Threshold : 0.002150955616962149
pred: (87800,)
gt: (87800,)
pred: (87800,)
gt: (87800,)
Accuracy : 0.9848, Precision : 0.9713, Recall : 0.9739, F-score : 0.9726
论文中的结果:对于PSM数据集
P: 96.91,R: 98.9, F1: 97.89
复现的 Recall 略低。但是 Precision 略高。二者本就是需要权衡。可以通过调整上面的 Threshold : 0.002150955616962149 平衡二者。
边栏推荐
- JS - use of arguments
- Three development trends of enterprise application from the perspective of the third technological revolution
- 每日三题 6.30(2)
- MySQL binlog cleanup
- Daily three questions 6.30
- Typescript enumeration
- 2022年起重机司机(限桥式起重机)考试试题及模拟考试
- Huisheng Huiying 2022 intelligent, fast and simple video editing software
- ShanDong Multi-University Training #3
- 微信个人小商店一键开通助手小程序开发
猜你喜欢

数字峰会人气火爆,城链科技引发新一轮商业变革

2022 examination questions and online simulation examination for safety management personnel of hazardous chemical business units

问题随记 —— file /usr/share/mysql/charsets/README from install of MySQL-server-5.1.73-1.glibc23.x86_64 c
![Jielizhi, production line assembly link [chapter]](/img/5f/9ea7fd3b93df1fd3ecbfc1b669c831.png)
Jielizhi, production line assembly link [chapter]

认识--Matplotlib

Redis~02 cache: how to ensure data consistency in MySQL and redis when updating data?

物联网现状及未来发展趋势

物联网应用技术专业是属于什么类

Glass mosaic

距离度量 —— 汉明距离(Hamming Distance)
随机推荐
SWT / anr problem - SWT causes low memory killer (LMK)
Commemorate becoming the first dayus200 tripartite demo contributor
Daily three questions 6.29
Paramètres communs de matplotlib
ShanDong Multi-University Training #3
物联网现状及未来发展趋势
【Swoole系列1】在Swoole的世界中,你将学习到什么?
Create Ca and issue certificate through go language
日本购物网站的网络乞丐功能
Matplotlib common settings
Postgresql源码(58)元组拼接heap_form_tuple剖析
SWT / anr problem - SWT causes kernel fuse deadlock
y53.第三章 Kubernetes从入门到精通 -- ingress(二六)
openresty 负载均衡
证券开户选哪个证券公司比较好,哪个更安全
RPA: Bank digitalization, business process automation "a small step", and loan review efficiency "a big step"
“35岁,公司老总,月薪2万送外卖“:时代抛弃你,连声再见都没有
2022年起重机司机(限桥式起重机)考试试题及模拟考试
Typescript enumeration
STM32F030F4驱动TIM1637数码管芯片