当前位置:网站首页>NIO Cup 2022 Niu Ke Summer Multi-School Training Camp 5 ABCDFGHK

NIO Cup 2022 Niu Ke Summer Multi-School Training Camp 5 ABCDFGHK

2022-08-02 19:03:00 Blank bacteria

比赛链接

A

题解

知识点:图论,dp.

暴力建图,Connect all the points of bi-directional path,In addition to the origin is one-way,And the weights of the path length as.

随后,从原点出发(\(f[0] = 0\),Other point minus infinity,Guaranteed from the origin),According to the weight from big to small(After the big walk first little walk,Equal to belong to the same stage,满足拓扑序)进行dp.

对于路径 \((u,v)\) The equation of state is \(g[v] = max(g[v],f[u]+1)\) ,其中 \(f,g\) Are stored last results and this time,Save a space do rolling array,随后把 \(g\) 还给 \(f\),下次dp前把 \(g\) 初始化负无穷.

最后,Find all the points of maximum.

时间复杂度 \(O(n^2)\)

空间复杂度 \(O(n^2)\)

代码

#include <bits/stdc++.h>

using namespace std;

struct node {
    int u, v, w;
};

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n;
    cin >> n;
    pair<int, int> p[2007];
    for (int i = 1;i <= n;i++) {
        int u, v;
        cin >> u >> v;
        p[i] = { u,v };
    }
    vector<node> e;
    for (int i = 0;i <= n;i++)///暴力连边,Only starting from the origin
        for (int j = 1;j <= n;j++)
            if (i != j)e.push_back({ i,j,(p[i].first - p[j].first) * (p[i].first - p[j].first) + (p[i].second - p[j].second) * (p[i].second - p[j].second) });
    sort(e.begin(), e.end(), [&](node a, node b) {
        return a.w > b.w;
    });///From big to small distance walk
    vector<int> f(n + 1, -2e9), g(n + 1, -2e9);
    int i = 0, j = 0;
    f[0] = 0;///Unlock the origin
    while (i < e.size()) {
        vector<node> t;
        while (j < e.size() && e[i].w == e[j].w) t.push_back(e[j++]);///Next, the sides of the size
        for (auto ed : t) g[ed.v] = -2e9;///初始化
        for (auto ed : t) g[ed.v] = max(g[ed.v], f[ed.u] + 1);///Updates to the next point to eat up the number of
        for (auto ed : t) f[ed.v] = max(g[ed.v], f[ed.v]);///滚动
        i = j;
    }
    cout << *max_element(f.begin(), f.end()) << '\n';
    return 0;
}

B

题解

知识点:二分,贪心,排序.

The answer can be binary monotonically,So give priority to binary.Found for an answer to choose the cheapest to verify the answer,So every time you need to sort sequence(Because the collation and answers about),满足关系式:

\[a_{val} + ka_{id} < b_{val} + kb_{id} \]

\(k\) If the value is less than or equal to the sum money,Proved the feasibility of the answer.

时间复杂度 \(O(n\log^2n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long

using namespace std;

int n, m;
struct node {
    ll val;
    ll id;
}a[100007];

bool check(int mid) {
    sort(a + 1, a + n + 1, [&](node a, node b) {
        return a.val + mid * a.id < b.val + mid * b.id;
    });
    ll sum = 0;
    for (int i = 1;i <= mid;i++) sum += a[i].val + mid * a[i].id;
    return sum <= m;
}

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    cin >> n >> m;
    for (int i = 1;i <= n;i++) cin >> a[i].val, a[i].id = i;
    int l = 0, r = n;
    while (l <= r) {
        int mid = l + r >> 1;
        if (check(mid)) l = mid + 1;
        else r = mid - 1;
    }
    cout << r << '\n';
    return 0;
}

C

题解

知识点:思维.

For aY/NSeveral classification discussion,Such as the following form:

YES数/NO数01>1
0-1-1/00
1-1/1-10
>111-1

There are four kinds of condition can be determined,Two possible determine,The remaining three uncertain direct \(-1\).

Identify four:

  1. Y > 1且N = 0,It can't be wrong to ask,Directly determine the as \(1\).
  2. N > 1且Y = 0,Ditto for \(0\) .
  3. Y > 1且N = 1,Determine the only mistake asking,并确定为 \(1\).
  4. N > 1且Y = 1,Ditto for \(0\) .

Possible to determine the two:

  1. Y = 1且N = 0,Finally ask error was found can be set as \(1\) ,Otherwise not sure,Therefore such count,Eventually determine the situation.
  2. N = 1且Y = 0,Ditto may be identified as \(0\) .

Three kinds of uncertainty:

  1. Y = 0且N = 0,Obviously not sure.
  2. Y = 1且N = 1,Find mistakes to ask,But still not sure.
  3. Y > 1且N > 1,Error about excess.

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>

using namespace std;

struct bit {
    int y, n;
}a[100007];

bool ans[100007];

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n;
    cin >> n;
    int x;
    string s;
    for (int i = 1;i <= 3 * n;i++) {
        cin >> x >> s;
        if (s == "YES") a[x].y++;
        else a[x].n++;
    }
    bool fault = false;
    bool ok = true;
    int cnt = 0;
    for (int i = 0;i < n;i++) {
        if (a[i].y > 1 && a[i].n == 0) ans[i] = 1;
        else if (a[i].y == 0 && a[i].n > 1) ans[i] = 0;
        else if (!fault && a[i].y > 1 && a[i].n == 1) ans[i] = 1, fault = 1;
        else if (!fault && a[i].y == 1 && a[i].n > 1) ans[i] = 0, fault = 1;
        else if (a[i].y == 1 && a[i].n == 0) ans[i] = 1, cnt++;
        else if (a[i].y == 0 && a[i].n == 1) ans[i] = 0, cnt++;
        else ok = false;
    }
    if (!ok || !fault && cnt) cout << -1;
    else for (int i = 0;i < n;i++) cout << ans[i];
    cout << '\n';
    return 0;
}

D

题解

知识点:树形dp.

题目要求,The tree satisfaction as \(1\) The node weights are the same(0/1)The number of connected subgraph.

因为全为 \(0\) 和全为 \(1\) Two things actually solution,So can the same method can be run two times.

考虑度为 \(1\) The node color as \(flag\) .设 \(dp[i]\) Said to number \(i\) The option with a subtree of the root node number.对于根 \(u\) 及其子节点 \(v_i\) ,每个子节点 \(v_i\) 都有 \(dp[v_i]\) Option scheme allows to \(v_i\) Subtree is eligible for root,And don't choose \(v_i\) 分支的一种,共有 \(dp[v_i] + 1\) 种方案.For all of the children \(v_i\) ,Can independently choose and don't choose,So for multiplication principle of,Get select child node \(v_i\) 的所有方案数为 \(\prod (dp[v_i]+1)\) .

But is all child nodes in the case of a no choice,Only leave a root.This scheme will make the node a degree as \(1\) 的点(For the tree is the child),The color must conform to the \(flag\) Only can be a solution.So that this kind of situation to te,故 \(dp[u] = \prod (dp[v_i]+1) - 1 + [a[u] == flag]\) .

The next is to record the answer,如果 \(a[u] = flag\) ,As an independent to \(u\) 为根的树(Not other node subtree)All the solutions and the subtree is all \(dp[u]\) 是等价的,因为 \(u\) No matter how to all eligible;如果 \(a[u] \neq flag\) ,As a separate tree,When only a child node is not feasible,此时根节点 \(u\) 是度为 \(1\) 的,与 \(dp[u]\) 的情况不同(For the tree is the child,\(u\) Only in the case of what all don't choose degrees as \(1\)),因此要从 \(dp[u]\) 中减去 \(\sum dp[v_i]\) .

值得注意的是,无论 \(a[u]\) Whether the same color,When its itself become a figure when only one node,都是满足条件的.This kind of situation is already included in the \(a[u] = flag\)\(dp[u]\) In the a,不需要额外计算,否则会重复.

No root tree can be in any node as root,因此从 \(1\) Began to be a problem.

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>

using namespace std;

const int mod = 1e9 + 7;
bool a[300007];
vector<int> g[300007];
bool flag;
int dp[300007];
int ans;

void dfs(int u, int fa) {
    int sum = 0, mul = 1;
    for (int v : g[u]) {
        if (v == fa) continue;
        dfs(v, u);
        mul = 1LL * mul * (dp[v] + 1) % mod;///(Child node scheme+Don't choose child nodes of a solution)In the multiplication principle
        sum = (0LL + sum + dp[v]) % mod;///Choose a child node scheme for
    }
    dp[u] = (mul - 1 + (a[u] == flag)) % mod;///mulMinus a child node is chosen could and could meet the requirements may
    if (a[u] == flag) ans = (0LL + ans + dp[u]) % mod;///The current node requirements,答案加上dp[u]即可
    else ans = (0LL + ans + dp[u] - sum + mod) % mod;///The current node is not in conformity with the requirements,Cannot be degrees as1的节点,Minus all choose a child node scheme
}

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n;
    cin >> n;
    for (int i = 1;i <= n;i++) {
        char ch;
        cin >> ch;
        a[i] = ch - '0';
    }
    for (int i = 1;i <= n - 1;i++) {
        int u, v;
        cin >> u >> v;
        g[u].push_back(v);
        g[v].push_back(u);
    }
    flag = 1;
    dfs(1, 0);
    flag = 0;
    dfs(1, 0);
    cout << ans << '\n';
    return 0;
}

F

题解

知识点:计算几何.

Pure computational geometry(没学过,Functions are the scene made,好难qwq.

Notice from to look down on,Therefore consider from down to up traversal,Consider each are covered with the arc length can be.

On the implementation process,Consider two circles \(a[i]\)\(a[j]\) 覆盖,And is the intersection of the situation.Found only need to use a cosine theorem to compute \(a[j]\) Radius on the edge,\(a[i]\)\(Dist_{C_i,C_j}\) Neighbors on the edge of the arc Angle of the triangle \(\theta\),And then multiplied by two is covered arc length arc;If two circles in or the latter is included in the former radian as \(0\) ;If the former is contained in the latter,Is a full cover,弧度为 \(2\pi\).

But the fact is more than a round cover,Therefore want to consider the problem of repeated covering,This involves range merge,Therefore consider to \(x\) Shaft is half shaft as a benchmark,逆时针为正方向,形成区间 \([-\pi,\pi]\) ,At the same time just meet atan2 函数的特性.

先计算 \(\overrightarrow {C_iC_j}\) The interval curve \(base\),然后加减 \(\theta\) ,Get the start edge curve radian and end.At the same time to consider the beginning edge curve \(<-\pi\) And the terminal side arc \(>\pi\) 的特判,Take a horn split into two,比如 \([-1.1\pi,0.5\pi]\) 拆成 \([0.9\pi,\pi]\)\([-\pi,0.5\pi]\) .

Then press the up side smallest to merge range,Pay attention to the possible the circle is not covered by any round,\(cnt\)\(0\) ,So you can't in the first segment as initial condition,应该以 \([-\pi-1,-\pi-1]\) Similar to the initial conditions,或者以\([\pi+1,\pi+1]\) Additional array as termination conditions,By the way can also put the last Duan Youxiao interval,,I personally like the latter.

时间复杂度 \(O(n^2)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>

using namespace std;

const double pi = acos(-1.0);

struct Point {
    double x;
    double y;
};

struct Circle {
    Point A;
    double r;
}a[1007];

double sqr(double x) {
    return x * x;
}

double dist2(Point A, Point B) {
    return sqr(A.x - B.x) + sqr(A.y - B.y);
}

double rad(double a, double b, double c) {///余弦定理,a对边,b,c邻边
    return acos((b * b + c * c - a * a) / (2 * b * c));
}

double xrad(Point A, Point B) {///与x轴正方向夹角[-pi,pi]
    return atan2(A.y - B.y, A.x - B.x);///斜率y/x,And is determined by the quadrant 
}

struct node {
    double x;
    double y;
}xy[1007 << 1];

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n;
    cin >> n;
    for (int i = 1;i <= n;i++)
        cin >> a[i].A.x >> a[i].A.y >> a[i].r;
    double ans = 0;
    for (int i = 1;i <= n;i++) {
        int cnt = 0;
        for (int j = i + 1;j <= n;j++) {
            ++cnt;
            double len2 = dist2(a[i].A, a[j].A);
            if (len2 >= sqr(a[i].r + a[j].r) || sqrt(len2) <= a[i].r - a[j].r) {///相离 或 jIt contains toi
                xy[cnt] = { 0,0 };
                continue;
            }
            else if (sqrt(len2) <= a[j].r - a[i].r) {///iIt contains toj,All covered up
                xy[cnt] = { -pi,pi };
                break;
            }
            double xita = rad(a[j].r, a[i].r, sqrt(len2));
            double base = xrad(a[j].A, a[i].A);
            xy[cnt].x = base - xita;
            xy[cnt].y = base + xita;
            if (xy[cnt].x < -pi) {///The edge is less than-pi那就分成[起边+2pi,pi],[-pi,终边]
                cnt++;
                xy[cnt] = { xy[cnt - 1].x + 2 * pi, pi };
                xy[cnt - 1].x = -pi;
            }
            else if (xy[cnt].y > pi) {///同上
                cnt++;
                xy[cnt] = { -pi, xy[cnt - 1].y - 2 * pi };
                xy[cnt - 1].y = pi;
            }
        }
        sort(xy + 1, xy + cnt + 1, [&](node a, node b) {
            return a.x < b.x;
        });///According to the edge of the smallest,开始合并区间
        xy[++cnt] = { pi + 1,pi + 1 };///Termination of the special judgment,Convenient take the last Duan Youxiao period plus
        ans += 2 * pi * a[i].r;///Plus the perimeter before
        double lpre = -pi - 1, rmax = -pi - 1;///初始化负无穷,Could not initialize the first,Because there are probably a all have no(If the above termination judgment,可以不考虑这个)
        for (int j = 1;j <= cnt;j++) {///合并区间
            if (xy[j].x >= rmax) {
                ans -= (rmax - lpre) * a[i].r;///Minus the perimeter of a range of
                lpre = xy[j].x;
            }
            rmax = max(rmax, xy[j].y);
        }
    }
    cout << fixed << setprecision(15) << ans << '\n';
    return 0;
}

G

题解

方法一

知识点:manachar.

不会qwq.

方法二

知识点:回文自动机.

模板题.不多说(Because will not sayqwq.

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

方法一

方法二

#include<bits/stdc++.h>
#define ll long long
using namespace std;

const int N = 5e5 + 10;
char s[N];
int n, lst, len[N];
int now, tot = 1, fail[N], cnt[N], t[N][26];

int getfail(int u, int p) {
    while (p - len[u] - 1 <= 0 || s[p - len[u] - 1] != s[p])	u = fail[u];
    return u;
}

int insert(char c, int id) {
    int p = getfail(now, id);
    if (!t[p][c - 'a']) {
        fail[++tot] = t[getfail(fail[p], id)][c - 'a'];
        t[p][c - 'a'] = tot;
        len[tot] = len[p] + 2;
        cnt[tot] = cnt[fail[tot]] + 1;
    }
    return cnt[now = t[p][c - 'a']];
}

ll ans[3];

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    cin >> n;
    cin >> s + 1;
    fail[0] = 1, len[1] = -1;
    for (int i = 1;i <= n;i++) {
        lst = insert(s[i], i);
        if (s[i] == 'k') ans[0] += lst;
        else if (s[i] == 'f') ans[1] += lst;
        else if (s[i] == 'c') ans[2] += lst;
    }
    cout << ans[0] << ' ' << ans[1] << ' ' << ans[2] << '\n';
    return 0;
}

H

题解

知识点:数学,计算几何.

画图,求并集面积.

显然,\(S_U = 2(\dfrac{n}{2})^2 + \dfrac{1}{2}\pi(\dfrac{n}{2})^2 = \dfrac{n^2}{2} + \dfrac{\pi n^2}{8}\) .

(把union areaAs intersectionQAQ,To be retired English)

时间复杂度 \(O(1)\)

空间复杂度 \(O(1)\)

代码

#include <bits/stdc++.h>

using namespace std;

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    double n;
    cin >> n;
    cout << fixed << setprecision(15) << n * n / 2.0 + n * n * acos(-1.0) / 8.0 << '\n';///Round and polygon area and set
    return 0;
}

K

题解

知识点:数学.

首先如果 \(n-k<=k\) Must get less than.

And then according to the principle of dove nest.Because a pair of headphones have two heads,The worst is each to just take a head that is \(n-k\) 个耳机,To catch up on \(k+1\) A headset add up to \(k+1\) 对,Therefore to take \(n+1\) 个耳机.

时间复杂度 \(O(1)\)

空间复杂度 \(O(1)\)

代码

#include <bits/stdc++.h>

using namespace std;

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n, k;
    cin >> n >> k;
    if (n - k <= k) {
        cout << -1 << '\n';
        return 0;
    }
    cout << n + 1 << '\n';
    return 0;
}
原网站

版权声明
本文为[Blank bacteria]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/214/202208021631201786.html