当前位置:网站首页>[set theory] partition (partition | partition example | partition and equivalence relationship)
[set theory] partition (partition | partition example | partition and equivalence relationship)
2022-07-03 06:56:00 【Programmer community】
List of articles
- One 、 Divide
- Two 、 Partition example
- 3、 ... and 、 Partition and equivalence theorem
One 、 Divide
Divide :
Nonempty set
A
A
A ,
A
≠
∅
A \not= \varnothing
A=∅ ,
A
A
A One of the sets Divide yes Set family
A
\mathscr{A}
A ,
The Set family
A
\mathscr{A}
A Included in
A
A
A The power set of a set ,
A
⊆
P
(
A
)
\mathscr{A} \subseteq P(A)
A⊆P(A) , All elements in the set family belong to
A
A
A The power set of a set ;
Set family
A
\mathscr{A}
A The element in is aggregate , be called Partition ( Block ) , All the elements in the set are
A
A
A The elements in the collection ;
This set family
A
\mathscr{A}
A It has the following properties :
①
A
\mathscr{A}
A Every element in the set family is not empty
∅
∉
A
\varnothing \not\in \mathscr{A}
∅∈A
②
A
\mathscr{A}
A Any two elements in the set family ( Partition / aggregate ) It's disjoint
∀
x
,
y
(
x
,
y
∈
A
∧
x
≠
y
⇒
x
∩
y
=
∅
)
\forall x,y ( x,y \in \mathscr{A} \land x \not= y \Rightarrow x \cap y = \varnothing )
∀x,y(x,y∈A∧x=y⇒x∩y=∅)
③
A
\mathscr{A}
A Set all the elements in the family ( Partition / aggregate ) The union of is
A
A
A aggregate
⋃
A
=
A
\bigcup \mathscr{A} = A
⋃A=A
Quotient set is a division , The elements in this set family are set of equivalent classes ;
Quotient set reference : 【 Set theory 】 Equivalence class ( Concept of equivalence class | Examples of equivalence classes | Equivalence properties | Quotient set | Quotient set example ) Four 、 Quotient set
Two 、 Partition example
The whole book is
E
E
E ,
take
E
E
E Of
n
n
n individual Extraordinary Of True subset , The meaning of non trivial is that it is neither an empty set , It's not itself ;
∅
≠
A
1
,
A
2
,
⋯
,
A
n
⊂
E
\varnothing \not= A_1 , A_2, \cdots, A_n \subset E
∅=A1,A2,⋯,An⊂E
1. Divide 1 be based on
1
1
1 Elements
Set family
A
i
=
{
A
i
,
∼
A
i
}
\mathscr{A}_i = \{ A_i , \sim A_i \}
Ai={ Ai,∼Ai} ,
i
=
1
,
2
,
⋯
,
n
i = 1, 2, \cdots , n
i=1,2,⋯,n ,
A
i
\mathscr{A}_i
Ai The set family contains
A
i
A_i
Ai Set and its complement
∼
A
i
\sim A_i
∼Ai , This set family
A
i
\mathscr{A}_i
Ai Meet the three properties of the above division , It's a division ;
2. Divide 2 be based on
2
2
2 Elements
Set family
A
i
=
{
A
i
∩
A
j
,
∼
A
i
∩
A
j
,
A
i
∩
∼
A
j
,
∼
A
i
∩
∼
A
j
}
−
{
∅
}
\mathscr{A}_i = \{ A_i \cap A_j , \sim A_i \cap A_j , A_i \cap \sim A_j , \sim A_i \cap \sim A_j\} - \{ \varnothing \}
Ai={ Ai∩Aj,∼Ai∩Aj,Ai∩∼Aj,∼Ai∩∼Aj}−{ ∅} ,
i
,
j
=
1
,
2
,
⋯
,
n
∧
i
≠
j
i,j = 1, 2, \cdots , n \land i \not= j
i,j=1,2,⋯,n∧i=j
Understand according to the following Venn diagram :
A
i
∩
A
j
A_i \cap A_j
Ai∩Aj Corresponding area ①
∼
A
i
∩
A
j
\sim A_i \cap A_j
∼Ai∩Aj Corresponding area ③
A
i
∩
∼
A
j
A_i \cap \sim A_j
Ai∩∼Aj Corresponding area ②
∼
A
i
∩
∼
A
j
\sim A_i \cap \sim A_j
∼Ai∩∼Aj Corresponding area ④
- If
A
i
A_i
Ai And
A
j
A_j
Aj Disjoint , So the region ① It's an empty set , The partition class cannot be an empty set , At this point, you need to subtract the empty set , Corresponding
−
{
∅
}
-\{ \varnothing \}
−{ ∅}
3. Divide 3 be based on
3
3
3 Elements
Set family
A
i
j
k
=
{
A
i
∩
A
j
∩
A
k
,
A
i
∩
∼
A
j
∩
∼
A
k
,
∼
A
i
∩
A
j
∩
∼
A
k
,
∼
A
i
∩
∼
A
j
∩
A
k
,
∼
A
i
∩
∼
A
j
∩
∼
A
k
}
−
{
∅
}
\mathscr{A}_{ijk} = \{ A_i \cap A_j \cap A_k , A_i \cap \sim A_j \cap \sim A_k , \sim A_i \cap A_j \cap \sim A_k , \sim A_i \cap \sim A_j \cap A_k , \sim A_i \cap \sim A_j \cap \sim A_k\} - \{ \varnothing \}
Aijk={ Ai∩Aj∩Ak,Ai∩∼Aj∩∼Ak,∼Ai∩Aj∩∼Ak,∼Ai∩∼Aj∩Ak,∼Ai∩∼Aj∩∼Ak}−{ ∅}

4. Divide 4 be based on
n
n
n Elements
Set family
A
1
,
2
,
⋯
,
n
=
{
A
1
∩
A
2
∩
⋯
∩
A
n
,
A
1
∩
∼
A
2
∩
⋯
∩
∼
A
n
,
∼
A
1
∩
A
2
∩
⋯
∩
∼
A
n
,
⋮
∼
A
1
∩
∼
A
2
∩
⋯
∩
∼
A
n
}
−
{
∅
}
\begin{array}{lcl} \mathscr{A}_{1,2,\cdots,n} = \{ \\\\ A_1\cap A_2 \cap \cdots \cap A_n , \\\\ A_1\cap \sim A_2 \cap \cdots \cap \sim A_n , \\\\ \sim A_1\cap A_2 \cap \cdots \cap \sim A_n , \\\\ \vdots \\\\ \sim A_1\cap \sim A_2 \cap \cdots \cap \sim A_n \\\\ \} - \{ \varnothing \} \end{array}
A1,2,⋯,n={ A1∩A2∩⋯∩An,A1∩∼A2∩⋯∩∼An,∼A1∩A2∩⋯∩∼An,⋮∼A1∩∼A2∩⋯∩∼An}−{ ∅}
The rules :
A
1
A_1
A1 To
A
n
A_n
An Union ,
n
n
n individual
∼
A
1
\sim A_1
∼A1 To
∼
A
n
\sim A_n
∼An Union , Each of them is merged , Only one is not a complement ,
∼
A
1
\sim A_1
∼A1 To
∼
A
n
\sim A_n
∼An Union ;
3、 ... and 、 Partition and equivalence theorem
Partition and equivalence theorem :
Premise : aggregate
A
A
A Non empty ,
A
≠
∅
A \not= \varnothing
A=∅
R
R
R The relationship is
A
A
A Equivalence relations on sets , Can be derived ,
A
A
A Set about
R
R
R Quotient set of relation
A
/
R
A/R
A/R yes
A
A
A Division ;
R
yes
A
On
etc.
price
Turn off
system
⇒
A
/
R
yes
A
Of
draw
branch
R yes A Superior price relationship \Rightarrow A/R yes A Division
R yes A On etc. price Turn off system ⇒A/R yes A Of draw branch
Set family
A
\mathscr{A}
A yes
A
A
A Partition on set , Define a Binary relationship yes Same block relationship
R
A
R_{\mathscr{A}}
RA ,
The Same block relationship yes
A
A
A On the assembly Equivalence relation ,
The Same block relationship yes Divided by
A
\mathscr{A}
A Defined relationships ;
x
R
A
y
⇔
∃
z
(
z
∈
A
∧
x
∈
z
∧
y
∈
z
)
xR_{\mathscr{A}}y \Leftrightarrow \exist z ( z \in \mathscr{A} \land x \in z \land y \in z )
xRAy⇔∃z(z∈A∧x∈z∧y∈z)
边栏推荐
- Error c2017: illegal escape sequence
- Inno setup production and installation package
- 2022年华东师范大学计科考研复试机试题-详细题解
- [leetcode] day93 - intersection of two arrays II
- Pytest -- write and manage test cases
- Stream stream
- 这两种驱蚊成份对宝宝有害,有宝宝的家庭,选购驱蚊产品要注意
- Software testing assignment - day 3
- (翻译)异步编程:Async/Await在ASP.NET中的介绍
- dataworks自定义函数开发环境搭建
猜你喜欢

Operation principle of lua on C: Foundation

10000小时定律不会让你成为编程大师,但至少是个好的起点

Numerical method for solving optimal control problem (I) -- gradient method

2022年华东师范大学计科考研复试机试题-详细题解

(翻译)异步编程:Async/Await在ASP.NET中的介绍

golang操作redis:写入、读取kv数据

Realize PDF to picture conversion with C #

The list of "I'm crazy about open source" was released in the first week, with 160 developers on the list

Software testing assignment - day 1

EasyExcel
随机推荐
修改MySQL密码
[leetcode] day93 - intersection of two arrays II
Sorting out the core ideas of the pyramid principle
How does the insurance company check hypertension?
保险公司怎么查高血压?
[Code] occasionally take values, judge blanks, look up tables, verify, etc
每日刷题记录 (十一)
[untitled] 8 simplified address book
Condition annotation in uni-app realizes cross segment compatibility, navigation jump and parameter transfer, component creation and use, and life cycle function
Pits encountered in the use of El checkbox group
Use the jvisualvm tool ----- tocmat to start JMX monitoring
2022 East China Normal University postgraduate entrance examination machine test questions - detailed solution
Troubleshooting of high CPU load but low CPU usage
Win 10 find the port and close the port
Crontab scheduled task
如何迁移或复制VMware虚拟机系统
[Fiddler actual operation] how to use Fiddler to capture packets on Apple Mobile Phones
100000 bonus is divided up. Come and meet the "sister who braves the wind and waves" among the winners
centos php7.3安装redis扩展
Resttemplate configuration use