当前位置:网站首页>[set theory] partition (partition | partition example | partition and equivalence relationship)
[set theory] partition (partition | partition example | partition and equivalence relationship)
2022-07-03 06:56:00 【Programmer community】
List of articles
- One 、 Divide
- Two 、 Partition example
- 3、 ... and 、 Partition and equivalence theorem
One 、 Divide
Divide :
Nonempty set
A
A
A ,
A
≠
∅
A \not= \varnothing
A=∅ ,
A
A
A One of the sets Divide yes Set family
A
\mathscr{A}
A ,
The Set family
A
\mathscr{A}
A Included in
A
A
A The power set of a set ,
A
⊆
P
(
A
)
\mathscr{A} \subseteq P(A)
A⊆P(A) , All elements in the set family belong to
A
A
A The power set of a set ;
Set family
A
\mathscr{A}
A The element in is aggregate , be called Partition ( Block ) , All the elements in the set are
A
A
A The elements in the collection ;
This set family
A
\mathscr{A}
A It has the following properties :
①
A
\mathscr{A}
A Every element in the set family is not empty
∅
∉
A
\varnothing \not\in \mathscr{A}
∅∈A
②
A
\mathscr{A}
A Any two elements in the set family ( Partition / aggregate ) It's disjoint
∀
x
,
y
(
x
,
y
∈
A
∧
x
≠
y
⇒
x
∩
y
=
∅
)
\forall x,y ( x,y \in \mathscr{A} \land x \not= y \Rightarrow x \cap y = \varnothing )
∀x,y(x,y∈A∧x=y⇒x∩y=∅)
③
A
\mathscr{A}
A Set all the elements in the family ( Partition / aggregate ) The union of is
A
A
A aggregate
⋃
A
=
A
\bigcup \mathscr{A} = A
⋃A=A
Quotient set is a division , The elements in this set family are set of equivalent classes ;
Quotient set reference : 【 Set theory 】 Equivalence class ( Concept of equivalence class | Examples of equivalence classes | Equivalence properties | Quotient set | Quotient set example ) Four 、 Quotient set
Two 、 Partition example
The whole book is
E
E
E ,
take
E
E
E Of
n
n
n individual Extraordinary Of True subset , The meaning of non trivial is that it is neither an empty set , It's not itself ;
∅
≠
A
1
,
A
2
,
⋯
,
A
n
⊂
E
\varnothing \not= A_1 , A_2, \cdots, A_n \subset E
∅=A1,A2,⋯,An⊂E
1. Divide 1 be based on
1
1
1 Elements
Set family
A
i
=
{
A
i
,
∼
A
i
}
\mathscr{A}_i = \{ A_i , \sim A_i \}
Ai={ Ai,∼Ai} ,
i
=
1
,
2
,
⋯
,
n
i = 1, 2, \cdots , n
i=1,2,⋯,n ,
A
i
\mathscr{A}_i
Ai The set family contains
A
i
A_i
Ai Set and its complement
∼
A
i
\sim A_i
∼Ai , This set family
A
i
\mathscr{A}_i
Ai Meet the three properties of the above division , It's a division ;
2. Divide 2 be based on
2
2
2 Elements
Set family
A
i
=
{
A
i
∩
A
j
,
∼
A
i
∩
A
j
,
A
i
∩
∼
A
j
,
∼
A
i
∩
∼
A
j
}
−
{
∅
}
\mathscr{A}_i = \{ A_i \cap A_j , \sim A_i \cap A_j , A_i \cap \sim A_j , \sim A_i \cap \sim A_j\} - \{ \varnothing \}
Ai={ Ai∩Aj,∼Ai∩Aj,Ai∩∼Aj,∼Ai∩∼Aj}−{ ∅} ,
i
,
j
=
1
,
2
,
⋯
,
n
∧
i
≠
j
i,j = 1, 2, \cdots , n \land i \not= j
i,j=1,2,⋯,n∧i=j
Understand according to the following Venn diagram :
A
i
∩
A
j
A_i \cap A_j
Ai∩Aj Corresponding area ①
∼
A
i
∩
A
j
\sim A_i \cap A_j
∼Ai∩Aj Corresponding area ③
A
i
∩
∼
A
j
A_i \cap \sim A_j
Ai∩∼Aj Corresponding area ②
∼
A
i
∩
∼
A
j
\sim A_i \cap \sim A_j
∼Ai∩∼Aj Corresponding area ④
- If
A
i
A_i
Ai And
A
j
A_j
Aj Disjoint , So the region ① It's an empty set , The partition class cannot be an empty set , At this point, you need to subtract the empty set , Corresponding
−
{
∅
}
-\{ \varnothing \}
−{ ∅}
3. Divide 3 be based on
3
3
3 Elements
Set family
A
i
j
k
=
{
A
i
∩
A
j
∩
A
k
,
A
i
∩
∼
A
j
∩
∼
A
k
,
∼
A
i
∩
A
j
∩
∼
A
k
,
∼
A
i
∩
∼
A
j
∩
A
k
,
∼
A
i
∩
∼
A
j
∩
∼
A
k
}
−
{
∅
}
\mathscr{A}_{ijk} = \{ A_i \cap A_j \cap A_k , A_i \cap \sim A_j \cap \sim A_k , \sim A_i \cap A_j \cap \sim A_k , \sim A_i \cap \sim A_j \cap A_k , \sim A_i \cap \sim A_j \cap \sim A_k\} - \{ \varnothing \}
Aijk={ Ai∩Aj∩Ak,Ai∩∼Aj∩∼Ak,∼Ai∩Aj∩∼Ak,∼Ai∩∼Aj∩Ak,∼Ai∩∼Aj∩∼Ak}−{ ∅}

4. Divide 4 be based on
n
n
n Elements
Set family
A
1
,
2
,
⋯
,
n
=
{
A
1
∩
A
2
∩
⋯
∩
A
n
,
A
1
∩
∼
A
2
∩
⋯
∩
∼
A
n
,
∼
A
1
∩
A
2
∩
⋯
∩
∼
A
n
,
⋮
∼
A
1
∩
∼
A
2
∩
⋯
∩
∼
A
n
}
−
{
∅
}
\begin{array}{lcl} \mathscr{A}_{1,2,\cdots,n} = \{ \\\\ A_1\cap A_2 \cap \cdots \cap A_n , \\\\ A_1\cap \sim A_2 \cap \cdots \cap \sim A_n , \\\\ \sim A_1\cap A_2 \cap \cdots \cap \sim A_n , \\\\ \vdots \\\\ \sim A_1\cap \sim A_2 \cap \cdots \cap \sim A_n \\\\ \} - \{ \varnothing \} \end{array}
A1,2,⋯,n={ A1∩A2∩⋯∩An,A1∩∼A2∩⋯∩∼An,∼A1∩A2∩⋯∩∼An,⋮∼A1∩∼A2∩⋯∩∼An}−{ ∅}
The rules :
A
1
A_1
A1 To
A
n
A_n
An Union ,
n
n
n individual
∼
A
1
\sim A_1
∼A1 To
∼
A
n
\sim A_n
∼An Union , Each of them is merged , Only one is not a complement ,
∼
A
1
\sim A_1
∼A1 To
∼
A
n
\sim A_n
∼An Union ;
3、 ... and 、 Partition and equivalence theorem
Partition and equivalence theorem :
Premise : aggregate
A
A
A Non empty ,
A
≠
∅
A \not= \varnothing
A=∅
R
R
R The relationship is
A
A
A Equivalence relations on sets , Can be derived ,
A
A
A Set about
R
R
R Quotient set of relation
A
/
R
A/R
A/R yes
A
A
A Division ;
R
yes
A
On
etc.
price
Turn off
system
⇒
A
/
R
yes
A
Of
draw
branch
R yes A Superior price relationship \Rightarrow A/R yes A Division
R yes A On etc. price Turn off system ⇒A/R yes A Of draw branch
Set family
A
\mathscr{A}
A yes
A
A
A Partition on set , Define a Binary relationship yes Same block relationship
R
A
R_{\mathscr{A}}
RA ,
The Same block relationship yes
A
A
A On the assembly Equivalence relation ,
The Same block relationship yes Divided by
A
\mathscr{A}
A Defined relationships ;
x
R
A
y
⇔
∃
z
(
z
∈
A
∧
x
∈
z
∧
y
∈
z
)
xR_{\mathscr{A}}y \Leftrightarrow \exist z ( z \in \mathscr{A} \land x \in z \land y \in z )
xRAy⇔∃z(z∈A∧x∈z∧y∈z)
边栏推荐
- [open source project recommendation colugomum] this group of undergraduates open source retail industry solutions based on the domestic deep learning framework paddlepadddle
- These two mosquito repellent ingredients are harmful to babies. Families with babies should pay attention to choosing mosquito repellent products
- VMware virtual machine C disk expansion
- Software testing assignment - the next day
- How to plan well?
- Search engine Bing Bing advanced search skills
- DBNet:具有可微分二值化的实时场景文本检测
- golang操作redis:写入、读取hash类型数据
- Stream stream
- (翻译)异步编程:Async/Await在ASP.NET中的介绍
猜你喜欢

dataworks自定義函數開發環境搭建

In depth analysis of reentrantlock fair lock and unfair lock source code implementation

Mise en place d'un environnement de développement de fonctions personnalisées

熊市里的大机构压力倍增,灰度、Tether、微策略等巨鲸会不会成为'巨雷'?

dataworks自定义函数开发环境搭建

Summary of remote connection of MySQL

Jmeter+influxdb+grafana of performance tools to create visual real-time monitoring of pressure measurement -- problem record

Software testing learning - the next day

Numerical method for solving optimal control problem (I) -- gradient method

Scroll view specifies the starting position of the scrolling element
随机推荐
Hands on redis master-slave replication, sentinel master-slave switching, cluster sharding
2021 year end summary
Laravel Web框架
How to plan well?
Inno Setup 制作安装包
C2338 Cannot format an argument. To make type T formattable provide a formatter<T> specialization:
Jenkins
The list of "I'm crazy about open source" was released in the first week, with 160 developers on the list
Win 10 find the port and close the port
JMeter JSON extractor extracts two parameters at the same time
opencv
On the practice of performance optimization and stability guarantee
Liang Ning: 30 lectures on brain map notes for growth thinking
Software testing learning - day one
【code】if (list != null && list.size() > 0)优化,集合判空实现方式
My 2020 summary "don't love the past, indulge in moving forward"
卡特兰数(Catalan)的应用场景
每日刷题记录 (十一)
Tool class static method calls @autowired injected service
crontab定时任务