当前位置:网站首页>KDD 2022 | GraphMAE:自监督掩码图自编码器
KDD 2022 | GraphMAE:自监督掩码图自编码器
2022-06-25 12:27:00 【智源社区】

论文地址:https://arxiv.org/abs/2205.10803
生成式自监督模型在NLP和CV领域得到广泛应用,而在graph领域对比学习占据主导地位,不论是节点分类还是图分类任务,生成式自监督的性能都被对比学习甩“几条街”。虽然如此,对比学习却有着致命缺陷,它要么过度依赖于数据增广,要么需要使用负采样、动量更新或指数滑动平均等策略来避免训练时陷入平凡解。而生成式自监督,特别是图自编码器通常目标是重建图自身的节点特征或结构信息,则会完全规避对比学习的局限。本文发现利用图自编码器,稍加改进,仅仅重建节点特征便能够获得优越的性能。GraphMAE的改进如下图所示:

概括地讲,改进主要是四点:1,掩码特征重建,不重建边;2,不同于大多数图自编码器使用的均方误差,GraphMAE使用缩放余弦误差作为损失函数;3,将编码器输出的嵌入重新掩码后再输入到解码器中;4,比起大多数图自编码器的解码器用多层感知机,GraphMAE的解码器使用图神经网络。
GraphMAE在无监督节点分类、无监督图分类以及在分子性质预测上的迁移学习三个任务共21个数据集上取得了与对比学习差不多,甚至是更好的效果。
边栏推荐
猜你喜欢
![[AI helps scientific research] fool drawing of loss curve](/img/38/5cb2a3d33a609dab3874215d5f7b5b.png)
[AI helps scientific research] fool drawing of loss curve

The editor is used every day. What is the working principle of language service protocol?

WIN10环境下配置pytorch

Differences between JS and JQ operation objects

Resolution of PPT paper drawing

Command line garbled

Talk about 11 key techniques of high availability

The amount is verified, and two zeros are spliced by integers during echo

Why are databases cloud native?

20220620 interview reply
随机推荐
浏览器的5种观察器
Lexical trap
字节跳动Dev Better技术沙龙来啦!参与活动赢好礼,限时免费报名中!
百度搜索稳定性问题分析的故事
[data visualization] 360 ° teaching you how to comprehensively learn visualization - Part 1
1024水文
Possible problems when idea encounters errors occurred while compiling module (solved)
剑指Offer 第 2 天链表(简单)
20220620 面试复盘
QT TCP UDP network communication < theory >
Oracle backup or restore database (expdp, impdp)
My first experience of go+ language -- a collection of notes on learning go+ design architecture
Match regular with fixed format beginning and fixed end
20220620 interview reply
2021-09-28
【AI助力科研】loss曲线傻瓜式绘制
原生js---无限滚动
Foreach method of array in JS
剑指 Offer II 032. 有效的变位词
[Visio]平行四边形在Word中模糊问题解决